Chemistry 12

Unit 1-Reaction Kinetics

<u>Chemistry 12</u> Worksheet 1-2 - Potential Energy Diagrams

USE THE POTENTIAL ENERGY DIAGRAM TO ANSWER THE QUESTIONS BELOW:

PROGRESS OF REACTION

- 1. Is the overall reaction as shown exothermic or endothermic?
- 2. What is the **activation energy** for the forward reaction?
- 3. What is the **activation energy** for the reverse reaction?
- 4. What is the **enthalpy change of reaction** (H) for the *forward* reaction?

5. What is the **H** for the *reverse* reaction?
6. Is the *reverse* reaction **exothermic** or **endothermic**?

- 7. Which species forms the *activated complex*?
- 8. Which species or set of species has the *highest* potential energy?

Worksheet 1-2 Potential Energy Diagrams

Chemistry 12

Unit 1-Reaction Kinetics

9. Which species or set of species has the <i>highest</i> kinetic energy?
10. Which species or set of species has the <i>weakest</i> bonds?
11. Which species or set of species has the <i>strongest</i> bonds?
12. What is H for the reaction: $X_2Y_2 \rightarrow X_2 + Y_2$?
13. Which do you think would be <i>faster</i> , the forward reaction or the reverse reaction? Explain
14. Which species or set of species has the <i>lowest</i> kinetic energy?
15. Show the ΔH , the Activation Energy for the <i>forward</i> reaction and the Activation Energy for the <i>reverse</i> reaction on the graph above.
16. As reactant particles approach each other before a collision, the <i>Potential</i> Energy goes,
while the <i>Kinetic</i> Energy goes
17. As particles of newly formed products move away from one another, the <i>Potential</i> Energy
goes, while the <i>Kinetic</i> Energy goes
18. As <i>reactant</i> molecules approach each other, they exert
forces on each other. Thus, as they move together, their speed
and their Potential Energy
19. State the meaning of <i>Activated Complex</i> .

Worksheet 1-2 Potential Energy Diagrams

Chemistry 12

Unit 1-Reaction Kinetics

20. Use the following *Potential Energy Diagram* to answer the questions below:

Worksheet 1-2 Potential Energy Diagrams

2 PDFMAILER.COM Print and send PDF files as Emails with any application, ad-sponsored and free of charge www.pdfmailer.com

Chen	nistry 12 Unit 1-Reaction Kineti
	j) Particles from which species or set of species is moving <i>most slowly</i> ?
	State how you arrived at your answer.
	k) The compound "AB" is a gas and the element "C" is a solid. What effect would
	grinding"C" into a fine powder have on the graph shown here?
21.	State the meaning of <i>Activation Energy</i> .
22.	What two requirements must be met before a collision between two reactant particles is <i>offective</i> ?
	2
23.	Describe what happens to two reactant particles which collide with <i>less</i> energy than the <i>Activation Energy</i> .
24.	Burning coal (Carbon) is a highly <i>exothermic</i> reaction. However coal, in contact with air at room temperature has such a <i>slow</i> reaction that it is not noticeable. Explain these two facts with the help of a Potential Energy Diagram.
	Potential Energy (KJ)

Progress of Reaction

Worksheet 1-2 Potential Energy Diagrams