<u>Chemistry 12</u> <u>Worksheet 1-1 - Measuring Reaction Rates</u>

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

 $Zn_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + ZnCl_{2(aq)}$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

Time	Mass of Zinc
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the *Rate of Reaction* in grams of Zn consumed per second.

Answer_____

b) Calculate the *Rate of Reaction* in moles of *Zn consumed per second*.

Answer_____

c) Write out the complete ionic equation for the reaction.

d) What will happen to the [H⁺] as the reaction proceeds?

e) What will happen to the [Cl⁻] as the reaction proceeds?

- 2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
 - a) Write a *balanced formula equation* for this reaction.

b) If the rate of consumption of magnesium is $5.0 \ge 10^{-9}$ mol/s, find the *rate of consumption of HCl* in moles/s.

Answer_____

c) If the rate of consumption of magnesium is 5.0 x 10⁻⁹ mol/s, find the *rate of production* of H_2 in g/s.

Answer_____

d) If the rate of consumption of magnesium is 5.0 x 10⁻⁹ mol/s, find the *rate of production* of H_2 in L/s (@STP).

Answer_____

e) If the rate of consumption of magnesium is $5.0 \ge 10^{-9}$ mol/s, find the mass of Mg consumed in 5.0 minutes.

Answer_____

- 3. When butane (C_4H_{10}) is burned in air (*oxygen*), the products *carbon dioxide* and *water* are formed.
 - a) Write a *balanced formula equation* for this reaction.
 - b) If butane is consumed at an average rate of 0.116 grams/s, determine the rate of production of CO_2 in *g/s*.

Answer_____

4. Given the reaction:

Worksheet 1-1 Measuring Reaction Rates

$$CO_{2(g)}$$
 + $NO_{(g)} \rightarrow CO_{(g)}$ + $NO_{2(g)}$
colourless colourless brown

Suggest a method which could be used to *monitor* the rate of this reaction.

Why wouldn't total pressure be a good way to monitor the rate of this reaction?

5. Equal volumes of $\text{Fe}^{2+}_{(aq)}$ and $\text{C}_2\text{O}_4^{2-}_{(aq)}$ are individually reacted with 0.10 M MnO₄- $_{(aq)}$, and the following data were obtained:

Reactant	Concentration	Temperature	e Time for complete reaction
Fe ²⁺	0.20 M	25°C	1.6 s
C ₂ O ₄ ²⁻	0.40 M	35°C	17.0 s

Explain in detail why these results are obtained.

6. The longer the *time of reaction*, the ______ the *rate of reaction*.

7. On the following set of axes, draw the shape of the curve you would expect if you plotted the *[HCl] vs. Time*, starting immediately after the two reactants are mixed. The equation for the reaction is:

$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + MgCl_{2(aq)}$$
Explain how you got that particular shape. Be detailed.

8. Give some examples of situations where we might want to *increase* the rate of a particular reaction.

9. Give some examples of situations where we might want to *decrease* the rate of a particular reaction.

10. Give *two* reasons why *water* is effective at putting out fires. Use concepts learned in this unit so far.

11. The following table relates the *time* and the *mass of Zn* during the reaction between Zn and 0.5M HNO₃:

 $Zn_{(s)} + 2HNO_{3(aq)} \rightarrow H_{2(g)} + Zn(NO_{3})_{2(aq)}$

Time	Mass of Zn (g)
0.0 s	36.2 g
60.0 s	29.6 g
120.0 s	25.0 g
180.0 s	22.0 g

a) Calculate the reaction rate, in g/s, from time 0 to 60 s.

b) Calculate the reaction rate, in g/s, from time 120s to 180 s.

c) Explain why the rate in calculation "b" is less than that of calculation "a".

12. Consider the *rate* of the following reaction:

 $Fe_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + FeCl_{2(aq)}$

a) Is rate dependent on *temperature*? ______. Explain your answer.

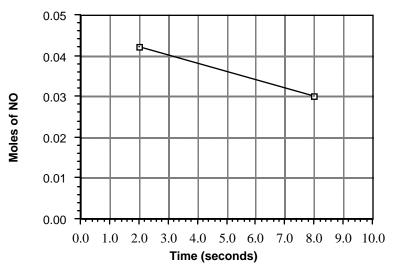
b) Is rate dependent on *pressure*? ______. Explain your answer.

c) Is rate dependent on *surface area*? ______. Explain your answer.

13. Consider the *rate* of the following reaction:

 $2NaOCl_{(aq)} \rightarrow 2NaCl_{(aq)} + O_{2(g)}$

Worksheet 1-1 Measuring Reaction Rates


Chemistry 12

a) Is rate dependent on <i>temperature</i> ?	Explain your answer.
b) Is rate dependent on <i>pressure</i> ?	Explain your answer.
c) Is rate dependent on <i>surface area</i> ?	Explain your answer.
c) Is rate dependent on [NaOCl]?	Explain your answer.

14. Consider the following reaction:

 $2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(g)}$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the *rate of reaction* in *moles of NO consumed per second*.