The following reactions take place at a pressure of 1.0 atm and a temperature of 298 K.

1) Given:

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CaO}_{(\mathrm{s})}
$$

How many grams of calcium carbonate will be needed to form 4.29 liters of carbon dioxide?
2) Given:

$$
2 \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}+15 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 12 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

If 2.45 liters of benzene are consumed in this reaction, how many liters of water can be formed?

Solutions

The following reactions take place at a pressure of 1.00 atm and a temperature of 300 K .

1) Given:

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+\text { heat } \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CaO}_{(\mathrm{s})}
$$

How many grams of calcium carbonate will be needed to form 4.29 liters of carbon dioxide?
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})\left(4.29 \mathrm{~L} \mathrm{CO}_{2}\right)}{(0.0821 \mathrm{~L} \mathrm{~atm} / \mathrm{mole} \mathrm{K})(300 \mathrm{~K})}=0.1742$ moles CO_{2}
0.1742 mole CO $_{2} \times \frac{1 \mathrm{~mole} \mathrm{CaCO}_{3}}{1 \mathrm{~mole} \mathrm{CO}_{2}} \times \frac{100.09 \mathrm{~g} \mathrm{CaCO}_{3}}{1 \mathrm{~mole} \mathrm{CaCO}_{3}}=17.4 \mathrm{~g} \mathrm{CaCO}_{3}$
2) Given:

$$
2 \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}+15 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 12 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

If 2.45 liters of benzene are consumed in this reaction, how many liters of water can be formed?
$\left.\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})\left(2.45 \mathrm{~L} \mathrm{C}_{6}\right.}{} \underline{H}_{6}\right)$
$0.0995{\text { mole } \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{2 \text { mole } \mathrm{H}_{2}}{2} \frac{\mathrm{O}}{2 \text { mole C }_{6}}=0.0995 \text { mole }_{6} \mathrm{H}_{2} \mathrm{O}, ~}_{\text {O }}$ 2 mole $\mathrm{C}_{6} \mathrm{H}_{6}$
$V=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{\left(0.0995 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}\right)(0.0821 \mathrm{~L} \mathrm{~atm} / \text { mole K})(300 \mathrm{~K})}{(1 \mathrm{~atm})}=2.45 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$

