	Chemistry 534 Practice Test
	Name:
1	The volume of a gaseous system is 25 L at a pressure of 100. kPa.
	While the temperature is kept constant, the volume of this system is raised to 100. L.
	What is the final pressure of the gas?
	· ·
	Answer:
2	Four moles of oxygen (O2) occupy a volume of 44.8 litres at a pressure of 1.48 atm.
	What is the temperature in degrees Celsius of the oxygen?

Answer: _

The diagram shows the shock-absorber of an automobile :

Shock-absorber: A device for absorbing the energy of sudden impulses or shocks in machinery or structures

Reference : Petit Larousse illustré

From the list below, select the properties of gases that justify their use in a shock-absorber.

- 1. Malleability
- 2. Hardness

3

- 3. Compressibility
- Ductibility
- 5. Indefinite shape
- 6. Viscosity
- 7. Conductivity
 - A) 2 and 7
 - B) 5, 6 and 7
 - C) 3 and 5
 - D) 1, 2 and 4
- During Chantal's birthday party, on a warm summer day, several of the birthday balloons burst.

Which of the following statements best explains this occurrence?

- A) Heat produces an increase in the mass of gas.
- B) Pressure produces an increase in the volume of gas.
- C) Heat produces an increase in the volume of gas.
- D) Pressure produces an increase in the mass of gas.

You conduct factors.	ed a laboratory experiment to	determine how the volume of a	a given gas is affected by 3
Give the mat	thematical equation and draw	the corresponding graph:	
Factor 1:	1		
	Equation:		F
	Graph including units:		
Factor 2:		- -	
	Equation:		
	Graph including units:		

	Factor 3:	
		Equation:
		Graph including units:
6	Two tanks	filled with gas are under the same conditions of temperature and pressure.
	One is fille	ed with hydrogen H_2 and the other with nitrogen N_2 .
	According	to Avogadro's law:
	This is pra	acticeuse your phone to research this question!
	Which of t	he following statements is true?
	A) N	litrogen molecules are more numerous than hydrogen molecules.
	B) N	litrogen molecules are as numerous as hydrogen molecules.
	C) T	he two tanks contain equal masses of gases.
	D) N	litrogen molecules are less numerous than hydrogen molecules.

7	the atmo	ight a balloon filled with 10 L of helium. At the time, the temperature outside was 20°C and espheric pressure was 100 kPa. Unfortunately, you let go of the balloon and it climbed to an where the temperature was -20°C and the pressure was 80 kPa.
	By how	many litres did the volume of the balloon vary at this altitude?
	Answer	······································
8	Which o	of the following procedures would result in an increase in the pressure of a gas?
	A)	Reduce the number of moles without changing the volume or the temperature.
	B)	Increase the temperature of the gas without changing the number of moles or the volume of the gas.
	C)	Increase the volume of the gas without changing the number of moles or the temperature of the gas.
	D)	Use the same number of moles of a more dense gas without changing the volume or the temperature.
9	The co	mbustion of acetylene, $C_2H_{2(g)}$, produces carbon dioxide gas, $CO_{2(g)}$, and water vapour, $H_2O_{(g)}$.
	If 15 g	of acetylene is burned, what volume of $CO_{2(g)}$ will be obtained at STP? Stoich is your friend!
	The ba	lanced equation for this reaction is :
		$2 C_2H_{2(g)} + 5 O_{2(g)} \rightarrow 4 CO_{2(g)} + 2 H_2O_{(g)} + Energy$

Answer:

On a given day a barometer reads 103.3 kPa.

What is the pressure of the gas in the bottle?

Answer:		

Mark is given a sample of gas in the laboratory. He assumes that this gas behaves like an ideal gas.

To test his assumption, he conducts an experiment and makes the following observations:

Number of moles of gas	2.0 mol
Volume of gas	10.0 L
Temperature	−73°C
Pressure	404 kPa

Given the above information, is his assumption correct?

Answer:	_ because _	
---------	-------------	--

On August 26, 1986, 1 200 residents of a village in Cameroon, West Africa, died within a few minutes.

The tragedy was attributed to a cloud of carbon dioxide that escaped from a lake inside a crater of an extinct volcano.

Here is what happened:

Knowing that the atmospheric conditions on August 26, 1997 favoured an increase in the volume of CO₂, which combinations below might best describe atmospheric temperature and pressure that fatal day?

A) COLD temperature; HIGH pressure

B) COLD temperature; LOW pressure

C) HIGH temperature; HIGH pressure

D) HIGH temperature; LOW pressure

13	What happens to the volume of a gas if we double the pressure, halve the number of gas molecules, and quadruple the temperature?		
	A)	It doubles.	
	B)	It is reduced by half.	
	C)	It remains the same.	
	D)	It quadruples.	
14	obtain :	P (Standard ambient temperature and pressure), you heat ammonium nitrate (NH ₄ NO ₃) and 3.6 g of water (H ₂ O) and laughing gas (N ₂ O). Equation for the reaction: $NH_4NO_{3(s)} \rightarrow 2 H_2O_{(l)} + N_2O_{(g)}$	
	What v	olume of laughing gas will be produced?	
	Answ	er:	
15	Accord	ling to the KMT, particles of a gas:	
	A) B)	attract each other but do not collide repel each other and collide	

C)

D)

neither attract nor repel each other but collide

neither attract nor repel each other and do not collide