Tech labs

TECH 11

Motion transmission

PROGRAMS: ST, EST, AST
LAB TYPE: Observation
CONCEPT: Motion transmission
STUDENT BOOK: Chapter 13, page 435
TOOLBOX: Page 76

GOAL

Observe the motion of various components in motion transmission systems.

OBSERVATION CRITERIA

- 1. In the field of mechanics, what is meant by motion transmission?
- 2. What is a set of components that perform the function of transmitting motion called?
- 3. In which two directions can components rotate, as suggested by the illustrations below?

4. A motion transmission system contains several components. In the table below, name the three types of components in a mechanical system and describe them briefly.

Type of component	Description

5. Name the two motion transmission systems illustrated below.

6. Under what circumstances can a speed change be observed in a motion transmission system?

MATERIALS

demonstration setups of various motion transmission systems

PROCEDURE

For each setup, carry out the following procedure:

- 1. Observe the setup and determine the type of motion transmission system it represents. Record your answer in the table on page 4.
- 2. Turn gear 1 clockwise. Observe and record the direction in which the driven component or components rotate.
- 3. Turn gear 1 counterclockwise. Observe and record the direction in which the driven component or components rotate.
- 4. Repeat steps 2 and 3. Compare the rotational speed of the components, using the emoticons as reference points.
- 5. Identify the components with the fastest and slowest rotational speeds. Record the results.
- 6. Put away the materials.

OBSERVATIONS

Record your results in the tables below. Give each table a title.

Title: _____

Setup	Type of system	Rotational direction of gears				
1		Gear 1		Gear 2		
		Clockwise				
		Counterclockwise				
2		Gear 1		Gear 4		
		Clockwise				
		Counterclockwise				
3		Gear 1	Gear 2		Gear 4	1
		Clockwise				
		Counterclockwise				
4		Gear 1	Gear 2	Gear 3		Gear 4
		Clockwise				
		Counterclockwise				
5		Gear 1	Ge		Gear 2	
		Clockwise				
		Counterclockwise				
6		Gear 1		Gear 4		
		Clockwise				
		Counterclockwise	1			
7		Gear 1	Gear 2		Gear 3	
		Clockwise				
		Counterclockwise				
8		Gear 1	Gear 2		Gear 3	3
		Clockwise				
		Counterclockwise				

Name:	_ Group:	Date:

Setup	Comparison of gear diameter	Comparison of rotational speed of gears
1	1 2	1 2
2	1 4	1 4
3	(1 2) 4	(1 2) 4
4	(1 2) 3 4	(1 2) 3 4
5	1 2	1 2
6	1 4	1 4
7	(1 2) 3	(1 2) 3
8	(1 2) 3	(1 2) 3

Title: _

REFLECTING ON YOUR OBSERVATIONS

- 1. Refer to your observations to complete the following sentences:
 - a) In a friction gear system, the greater the ______ of a gear, the
 - _____ its _____ speed will be.
- 2. In setup 6, why is there a difference in speed between the two pulleys?
- **3.** According to your observations, what condition is necessary for one pulley to rotate in a different direction from another in a belt and pulley system?
- **4.** In the systems you observed, did the rotational direction influence speed changes? Identify the determining factor for a change in speed.
- **5.** Have your observations helped you understand how components move in motion transmission systems?
- 6. How could you improve the protocol for this lab?

TEMPLATES FOR THE FRICTION GEAR SYSTEMS

TEMPLATES FOR THE BELT AND PULLEY SYSTEMS

8 Tech labs

