Ka Expressions

1. Write Ka expressions for the following acids.
a) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b) HNO_{3}
c) $\mathrm{H}_{2} \mathrm{CO}_{3}$
d) $\mathrm{H}_{3} \mathrm{PO}_{4}$

Equilibrium in Weak Acids

1. If Ka for $\mathrm{HNO}_{2},=4.5 \times 10^{-4}$, find the $\left[\mathrm{H}^{+}\right]$a $0.9 \mathrm{M} \mathrm{HNO}_{2}$ solution.
2. Find the $\left[\mathrm{H}^{+}\right]$of a 0.153 M HOCl solution with a $\mathrm{Ka}=3.2 \times 10^{-8}$.
3. A certain acid (HA) has an ionization constant (Ka) of 5.0×10^{-6}. Find the $\left[\mathrm{H}^{+}\right]$in a 1.0 M solution.
4. Find the value of Ka of an acid if a 2.00 M solution has a hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$of 0.14 M .
5. Find the Ka in a 0.31 M HOCl solution which has a $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}$.

Ka and pH

1. Nicotinic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$ is a B vitamin. It is also a weak acid with a $\mathrm{Ka}=1.4 \times 10^{-5}$. What is the $\left[\mathrm{H}^{+}\right]$and pH of a 0.010 M solution?
2. Chloroacetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\right)$, is a weak acid. Calculate Ka of a 0.10 M solution if the pH is 1.96 .
3. Ka for $\mathrm{HNO}_{2}=4.5 \times 10^{-4}$. Find the pH of a 0.9 M solution.
4. Find the Ka of a $2.00 \mathrm{M} \mathrm{HClO}_{2}$ solution if $\left[\mathrm{H}^{+}\right]=0.14 \mathrm{M}$.
5. Find the Ka of a $0.11 \mathrm{M} \mathrm{HNO}_{2}$ solution if $\left[\mathrm{H}^{+}\right]=6.8 \times 10^{-3} \mathrm{M}$.
6. If a 0.25 M solution of acetic acid has a $\mathrm{Ka}=1.8 \times 10^{-5}, \mathrm{fmd} \mathrm{pH}$ and $\left[\mathrm{H}^{+}\right]$
7. A 0.20 M solution of a weak acid (HA) has a pH of 3.6. Calculate Ka.
8. In a 0.50 M solution of a weak acid HX , the $\left[\mathrm{H}^{+}\right]$is $8.0 \times 10^{-2} \mathrm{M}$. Find Ka.
9. For the acid $\mathrm{HCN} \mathrm{Ka}=4.0 \times 10^{-10}$ What is the $\left[\mathrm{H}^{+}\right]$and pH of a 0.010 M solution?

$\mathrm{Ka}, \mathrm{pH}, \mathrm{pOH}, \%$ ionization

1. Calculate the Ka of a 0.750 M solution of the weak acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ which has a pH of 3.92 .
2. Calculate Ka of the weak acid HF if a 0.267 M soltuion has a pH of 5.62 .
3. Calculate the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH for each of the following:
a) $0.367 \mathrm{M} \mathrm{HNO}_{2} ; \mathrm{Ka}=7.1 \times 10^{-4}$
b) $1.32 \mathrm{M} \mathrm{HOCl} ; \mathrm{Ka}=3.0 \times 10^{-8}$
c) $2.92 \mathrm{M} \mathrm{HCN} ; \mathrm{Ka}=6.2 \times 10^{-10}$
4. Calculate the percent ionization for each of these acids:
a) $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Ka}=1.8 \times 10^{-5}$
b) $0.00100 \mathrm{M} \mathrm{HCN} ; \mathrm{Ka}=6.2 \times 10^{-10}$
5. A $1.50 \times 10^{-2} \mathrm{M}$ solution of a weak acid has a pH of 3.92. Calculate percent ionization.
6. A $4.5 \times 10^{-3} \mathrm{M}$ soltuion of the weak acid HA is 4.72% ionized. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$, $\mathrm{pH}, \mathrm{pOH}$ and Ka .
7. A solution contains 8.35 g of $\mathrm{Ba}(\mathrm{OH})_{2}$ in 1600 ml of solution. Calculate $\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right]$, pH and pOH .
8. Calculate the pH and pOH of a solution containing 7.30 g of HCl in 1.0 L of solution.

Ka Expressions - Answers

a) $\mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \underline{H}_{3} \mathrm{O}_{2}^{-}\right]$
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
b) $\mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{3}^{-}\right]$
$\left[\mathrm{HNO}_{3}\right]$
c) $\mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
d) $\mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$ [$\mathrm{H}_{3} \mathrm{PO}_{4}$]

Equilibrium in Weak Acids - Answers

1. $\left[\mathrm{H}^{+}\right]=0.02 \mathrm{M}$
2. $\left[\mathrm{H}^{+}\right]=7.0 \times 10^{-5} \mathrm{M}$
3. $\left[\mathrm{H}^{+}\right]=0.002 \mathrm{M}$
4. $\mathrm{Ka}=1.1 \times 10^{-2}$
5. $\mathrm{Ka}=3.2 \times 10^{-8}$

Ka and pH - Answers

1. $\left[\mathrm{H}^{+}\right]=3.74 \times 10^{-4} \mathrm{M} ; \mathrm{pH}=3.4$
2. 1.4×10^{-3}
3. 1.7
4. 1.05×10^{-2}
5. 4.5×10^{-4}
6. $\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=2.7$
7. 3.2×10^{-7}
8. 1.52×10^{-2}
9. $\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-6} \mathrm{M} ; \mathrm{pH}=5.7$
$\mathrm{Ka}, \mathrm{pH}, \mathrm{pOH}, \%$ ionization - Answers
10. 1.93×10^{-8}
11. 2.16×10^{-11}
12. a) $1.61 \times 10^{-2} ; 6.21 \times 10^{-13} ; 1.8 ; 12.2$
b) $1.99 \times 10^{-4} ; 5.03 \times 10^{-11} ; 3.7 ; 10.3$
c) $4.25 \times 10^{-5} ; 2.35 \times 10^{-10} ; 4.37 ; 9.63$
13. a) 1.34% b) 0.079%
14. 0.800%
15. $2.12 \times 10^{-4} ; 4.72 \times 10^{-11} ; \mathrm{Ka}=1.0 \times 10^{-5} ; 3.67 ; 10.33$
16. $\left[\mathrm{OH}^{-}\right]=0.06 \mathrm{M} ;\left[\mathrm{H}^{+}\right]=1.7 \times 10^{-13} ; \mathrm{pH}=12.8 ; \mathrm{pOH}=1.2$
17. $\mathrm{pH}=0.7 ; \mathrm{pOH}=13.3$
