Ka Expressions

1. Write Ka expressions for the following acids.

- a) HC₂H₃O₂
- b) HNO₃
- c) H₂CO₃
- d) H₃PO₄

Equilibrium in Weak Acids

- 1. If Ka for HNO₂, = 4.5×10^{-4} , find the [H⁺] a 0.9 M HNO₂ solution.
- 2. Find the $[H^+]$ of a 0.153 M HOCl solution with a Ka = 3.2×10^{-8} .
- 3. A certain acid (HA) has an ionization constant (Ka) of 5.0 x 10⁻⁶. Find the [H⁺] in a 1.0 M solution.
- 4. Find the value of Ka of an acid if a 2.00 M solution has a hydrogen ion concentration [H⁺]of 0.14 M.
- 5. Find the Ka in a 0.31 M HOCl solution which has a $[H^+] = 1.0 \times 10^{-4} M$.

Ka and pH

- 1. Nicotinic acid (HC₂H₄NO₂) is a B vitamin. It is also a weak acid with a Ka= 1.4×10^{-5} . What is the [H⁺] and pH of a 0.010 M solution?
- 2. Chloroacetic acid (HC₂H₂ClO₂), is a weak acid. Calculate Ka of a 0.10 M solution if the pH is 1.96.
- 3. Ka for $HNO_2 = 4.5 \times 10^{-4}$. Find the pH of a 0.9 M solution.
- 4. Find the Ka of a 2.00 M HClO₂ solution if $[H^+] = 0.14$ M.
- 5. Find the Ka of a 0.11 M HNO₂ solution if $[H^+] = 6.8 \times 10^{-3} M$.
- 6. If a 0.25 M solution of acetic acid has a $Ka=1.8 \times 10^{-5}$, fmd pH and $[H^+]$
- 7. A 0.20 M solution of a weak acid (HA) has a pH of 3.6. Calculate Ka.
- 8. In a 0.50 M solution of a weak acid HX, the $[H^+]$ is 8.0 x 10^{-2} M. Find Ka.
- 9. For the acid HCN Ka= 4.0×10^{-10} What is the [\vec{H}^+] and pH of a 0.010 M solution?

Ka, pH, pOH, % ionization

- 1. Calculate the Ka of a 0.750 M solution of the weak acid $HC_2H_3O_2$ which has a pH of 3.92.
- 2. Calculate Ka of the weak acid HF if a 0.267 M soltuion has a pH of 5.62.
- 3. Calculate the $[H^+]$, $[OH^-]$, pH and pOH for each of the following:
- a) 0.367 M HNO₂; Ka=7.1 x 10⁻⁴
- b) 1.32 M HOCl; Ka=3.0 x 10⁻⁸
- c) 2.92 M HCN; Ka=6.2 x 10⁻¹⁰
- 4. Calculate the percent ionization for each of these acids:
- a) 0.100 M HC₂H₃O₂ Ka=1.8 x 10⁻⁵
- b) 0.00100 M HCN; $Ka = 6.2 \times 10^{-10}$
- 5. A 1.50×10^{-2} M solution of a weak acid has a pH of 3.92. Calculate percent ionization.
- 6. A 4.5 x 10⁻³ M soltuion of the weak acid HA is 4.72% ionized. Calculate [H⁺], [OH⁻], pH, pOH and Ka.
- 7. A solution contains 8.35 g of Ba(OH)₂ in 1600 ml of solution. Calculate [OH⁻], [H⁺], pH and pOH.
- 8. Calculate the pH and pOH of a solution containing 7.30 g of HCl in 1.0 L of solution.

Ka Expressions - Answers

a)
$$Ka = [\underline{H^+}] [\underline{C_2 H_3 O_2}]$$

 $[HC_2 H_3 O_2]$
b) $Ka = [\underline{H^+}] [NO_3]$
 $[HNO_3]$
c) $Ka = [\underline{H^+}] [HCO_3^-]$
 $[H_2 CO_3]$
d) $Ka = [\underline{H^+}] [H_2 PO_4]$

Equilibrium in Weak Acids - Answers

1. $[H^+] = 0.02 \text{ M}$ 2. $[H^+] = 7.0 \times 10^{-5} \text{ M}$ 3. $[H^+] = 0.002 \text{ M}$ 4. $Ka = 1.1 \times 10^{-2}$ 5. $Ka = 3.2 \times 10^{-8}$

Ka and pH - Answers

1. $[H^+] = 3.74 \times 10^{-4} \text{ M}$; pH = 3.4 2. 1.4×10^{-3} 3. 1.74. 1.05×10^{-2} 5. 4.5×10^{-4} 6. $[H^+] = 2.1 \times 10^{-3} \text{ M}$; pH = 2.7 7. 3.2×10^{-7} 8. 1.52×10^{-2} 9. $[H^+] = 2.0 \times 10^{-6} \text{ M}$; pH = 5.7

Ka, pH, pOH, % ionization - Answers

```
    1. 1.93 x 10<sup>-8</sup>
    2. 2.16 x 10<sup>-11</sup>
    3. a) 1.61 x 10<sup>-2</sup>; 6.21 x 10<sup>-13</sup>; 1.8; 12.2
b) 1.99 x 10<sup>-4</sup>; 5.03 x 10<sup>-11</sup>; 3.7; 10.3
c) 4.25 x 10<sup>-5</sup>; 2.35 x 10<sup>-10</sup>; 4.37; 9.63
    4. a) 1.34% b) 0.079%
    5. 0.800%
    6. 2.12 x 10<sup>-4</sup>; 4.72 x 10<sup>-11</sup>; Ka = 1.0 x 10
```

- 6. 2.12×10^{-4} ; 4.72×10^{-11} ; Ka = 1.0 x 10⁻⁵; 3.67; 10.33 7. [OH⁻] = 0.06 M; [H⁺] = 1.7 x 10⁻¹³; pH = 12.8; pOH = 1.2
- 8. pH = 0.7 ; pOH = 13.3