The ideal gas law is an equation that relates the volume, temperature, pressure and amount of gas particles to a constant. The ideal gas constant is abbreviated with the variable R and has the value of 0.0821 atm·L/mol·K. The ideal gas law can be used when three of the four gas variables are known. When using this equation it is important that the units for **pressure** are atmospheres (atm), **volume** is in liters (L), and **temperature** is converted to kelvins (K). The **amount** of gas is measured in units called moles (mol).

USEFUL EQUATIONS		
PV = nRT	1.00 atm = 101300 Pa	
$R = 0.0821 \frac{atm \cdot L}{mol \cdot K}$	1.00 atm = 101.3 kPa	
$T_K = T_C + 273$	1.00 atm = 760 mmHg	
$1 \text{ cm}^3 = 1 \text{ mL}$	1.00 atm = 760 torr	
1 L = 1000 mL	1.00 atm = 14.7 psi	

<u>Unknown</u>	Equation	Known Variables
pressure	$P = \frac{nRT}{V}$	amount, temp., volume
volume	$V = \frac{nRT}{P}$	amount, temp., pressure
temperature	$T = \frac{PV}{nR}$	pressure, volume, amount
amount	$n = \frac{PV}{RT}$	pressure, volume, temp.

example

The pressure exerted by 2.8 moles of argon gas at a temperature of 85°C is 420 torr. What is the volume of this sample?

$$P = 420 \text{ torr}$$

$$V = ?$$
 $n = 2.8 \text{ mol}$

$$R = 0.0821 \quad \frac{atm \cdot L}{mol \cdot K}$$

$$T = 85^{\circ}\text{C}$$

$$\frac{420 \text{ toxr}}{1} \times \frac{1 \text{ atm}}{760 \text{ toxr}} = 0.553 \text{ atm}$$

$$T = 85^{\circ}\text{C} + 273 = 358 \text{ K}$$

$$V = \frac{nRT}{R}$$

$$V = \frac{(2.8 \text{ mod})(0.08206 \frac{\text{Msp.L}}{\text{hog/K}})(358 \text{ K})}{0.553 \text{ Nsm}} = 82 \text{ L}$$

Solve the following problems.

- 1. A tank contains 115 moles of neon gas. It has a pressure of 57 atm at a temperature of 45°C. Calculate the volume of the tank.
- 2. A scuba tank has a pressure of 195 atm at a temperature of 10°C. The volume of the tank is 350 L. How many moles of air are in the tank?
- 3. A helium-filled balloon has a volume of 208 L and it contains 9.95 moles of gas. If the pressure of the balloon is 1.26 atm, determine the temperature in Celsius degrees.
- 4. A tank of oxygen has a volume of 1650 L. The temperature of the gas inside is 35°C. If there are 9750 moles of oxygen in the tank what is the pressure in PSI?
- 5. A canister of acetylene has a volume of 42 L. The temperature of the acetylene is 305 K and the pressure is 780 torr. Determine the amount (moles) of gas in the canister.
- 6. Calculate the volume of a CO₂ cartridge that has a pressure of 850 PSI at a temperature of 21°C. The cartridge contains 0.273 mol of CO₂.
- 7. A tank contains 2500 L of argon gas. The pressure is 13790 kPa and the temperature is 25°C. How many moles of argon are in the tank?