Eureka Episodes Forces and Energy Notes

Episode 1 Inertia

Inertia

- "Laziness"
- Is the resistance of a physical object to any change in its state of motion.

Newton's First Law

- \cdot Things like to keep on doing what they are already doing.

At rest

- not moving

Constant speed

- The speed stays the same--driving at a constant $100 \mathrm{~km} / \mathrm{h}$ on the highway.

To start or stop an object

- requires a force F measured in Newtons (N) be applied

A force

- Is a push or a pull

Episode 2 Mass

Mass

- The tendency of an object to resist changes in its state of motion varies with mass.
- Mass is a measure of the amount of matter in an object.
- Mass is that quantity that is solely dependent upon the inertia of an object.
- Inertia is the resistance of a physical object to any change in its state of motion.
- The more inertia that an object has, the more mass that it has.
- A more massive object has a greater tendency to resist changes in its state of motion.
- Measured on a balance -- match up the number of 1 kg cylinders
e.g. The cube of lead (Pb) vs the cube of Styrofoam

Massive

- In Science class does not mean size as in volume
- masses and masses of stuff

Speed

- Distance traveled per unit time.
- Measured in m/s.
e.g. Red 2 kg ball vs blue 1 kg ball

Double the mass

- double the force to start or stop the object

Double the mass

- double the force needed to get the 2 kg red ball up to the same speed as the 1 kg blue ball

Double the change of speed

- double the force required to change the speed from

Newton's Second Law

- Force varies with the mass and the rate of change of speed
- The greater the rate of change of speed required the

Stopping

- Changing the speed of an object to \qquad

Starting

- Changing the speed of an object from \qquad

Episode 4 Acceleration Part 1

Light racing bike

- less mass
- easier to change the speed
- less time required to change the speed

Think acceleration times for my Golf versus a Porsche!!!

Golf	from rest $0-100 \mathrm{~km} / \mathrm{h}$	5.6 s	Mass 1850 kg
Porsche 911	from rest $0 \mathrm{~km} / \mathrm{h}-100 \mathrm{~km} / \mathrm{h}$	3.5 s	Mass 1120 kg

There is a time component when you change the speed!

Force varies with mass AND rate of change of speed.

Equation (equal signs!!)
$F=m a$

Acceleration

- Rate of change of speed
- If speed is measured in m / s then the rate of change of speed is measured in $\mathrm{m} / \mathrm{s} / \mathrm{s}$.

Baseball pitchers are really baseball "accelerators"!
The baseball starts at zero speed and reaches its final speed as it leaves the pitcher's hand--wind up to get the ball up to its release speed.

Episode 5 Acceleration Part 1

Train

- Accelerating to $36 \mathrm{~km} / \mathrm{h}$ in 10 seconds.

Dimensional Analysis:

Max. Speed \qquad
So at max speed it travels \qquad .

Acceleration \qquad

Episode 6 Gravity

Free Body Diagram of an Apple on a Tree

Gravity

- Pulls everything straight down
- Is a force--Fg
- Fg = force of gravity = WEIGHT

All objects in the Universe attract all other objects in the Universe.

- The more mass the object has the more the attractive force.
- The Earth is Massive therefore its Fatt is high.
- Everything on Earth is attracted towards the Earth by the Force of gravity =

Everything falls towards Earth at a rate of $10 \mathrm{~m} / \mathrm{s}^{2}$.
This is the ACCELERATION DUE TO GRAVITY -- not the Force of gravity
Acceleration due to gravity is written as \qquad

Force of gravity $=$ mass x acceleration due to gravity

Free Body Diagram of an Apple in my Hand:

Difference btw the Moon and the Earth? \qquad

Therefore the acceleration due to gravity on the Moon is \qquad

Mass on the Moon \qquad

Weight on the Moon \qquad

