<u>Chemistry 12</u> <u>Worksheet 2-1 - Equilibrium, Enthalpy</u> <u>and Entropy</u>

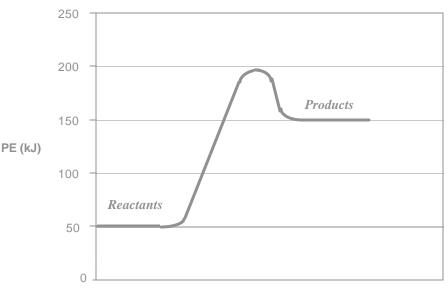
What	do people mean when they say that a reaction is <i>reversible?</i>
Give	four things which are true about a system at equilibrium:
1.	
2.	
3.	
·	
	is meant by <i>macroscopic properties</i> ?
Give	some examples of macroscopic properties:
What	happens to macroscopic properties <i>at equilibrium</i> ?
,, inter	
How	do the rates of the forward and reverse reaction compare at equilibrium?
Do th	e forward and reverse reactions stop at equilibrium?
What	can be said about the concentrations of all reactants and products at equilibrium?
Why	is chemical equilibrium called <i>dynamic equilibrium</i> ?
-	

Worksheet 2-1 - Equilibrium, Enthalpy and Entropy

10. Given the reaction: $A + B \rightleftharpoons C + D$ When 1.0 mole of A is combined with 1.0 mole of B, an equilibrium is established in which [A] =0.2 M, [B] = 0.2 M, [C] = 0.8 M and [D] = 0.8 MIf, at the same temperature, 1.0 mole of C and 1.0 mole of D is combined. When equilibrium is established, determine what the following concentrations will be: [A] = M, [B] = M, [C] = M and [D] = M11. Given sufficient activation energy, a system *not at equilibrium* will eventually move toward _____ 12. Systems will tend toward a position of *enthalpy*. 13. Systems will tend toward a position of entropy. 14. Tell whether each of the following is *endothermic* or *exothermic* and state which has *minimum enthalpy*, the *reactants* or the *products*: $Cl_{2(g)} + PCl_{3(g)} \rightleftharpoons PCl_{5(g)} \qquad \Delta H = -92.5 \text{ kJ}$ a. ______thermic and the ______have *minimum enthalpy*. $2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)} \Delta H = 92.4 \text{ kJ}$ b? thermic and the have *minimum enthalpy*. c? $CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ} \rightleftharpoons CO_{(g)} + 3H_{2(g)}$ ______thermic and the ______have *minimum enthalpy*. If the reaction: $Cb_{(aq)} \rightleftharpoons Cl_{2(g)} \Delta H = +25 \text{ kJ}$ 15. was proceeding to the *right*, the enthalpy would be ______ ing. Is this a *favourable* change? If the reaction: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + 92.4 \text{ kJ}$ 16? was proceeding to the *right*, the enthalpy would be ______ing. Is this a *favourable* change? _____.

Unit 2 - Chemical Equilibrium

17.	For each of the following, decide whether the <i>reactants</i> or the <i>products</i> have <i>greater entropy</i> :					
	a)	$I_{2(s)} \rightleftharpoons I_{2(g)}$ The	have greater entropy.			
	b)	$4PH_{3(g)} \rightleftharpoons P_{4(g)} + 6H_2$	(g)			
		The	have greater entropy.			
	c)	$NH_{3(g)} \rightleftharpoons NH_{3(aq)}$				
		The	have greater entropy.			
18.	When the two tendencies <i>oppose each other</i> (one favours reactants, the other favours					
	proc	lucts), the reaction will				
	Processes in which <u>both</u> the tendency toward <i>minimum enthalpy</i> and toward <i>maximum</i>					
	entropy favour the <u>products</u> , will					
	Processes in which <u>both</u> the tendency toward <i>minimum enthalpy</i> and toward <i>maximum</i>					
	entr	<i>copy</i> favour the <u>reactants</u> , wi	11			
19.	For each of the following reactions decide which has <i>minimum enthalpy</i> (reactants or products), which has <i>maximum entropy</i> (reactants or products), and if the reactants are mixed, what will happen? (go to completion/ reach a state of equilibrium/not occur at all).					
	a) $4HCl_{(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(g)} ? 2Cl_{2(g)} + 114.4 \text{ kJ}$					
		The	have minimum enthalpy.			
		The	have maximum entropy.			
	If HCl + O ₂ are put together, what should happen?(go to completion/ reach a state equilibrium/not occur at all)					
	b)	$CO_{2(g)} + H_{2(g)} \rightleftharpoons CO_{(g)} + H_2O_{(g)}; \Delta H = 42.6 \text{ kJ}$				
		The	have minimum enthalpy.			
		he reactants and products compare?				


		The	has/have minimum enthalpy.			
		The	has/have maximum entropy.			
		If PH _{3(g)} was put in a flask? equilibrium/not occur at all)	what should happen?(go to completion/ reach a state of			
20.	Do sys	tems always reach <i>minimun</i>	<i>n enthalpy</i> at equilibrium?			
	Explair	1				
21.	Do systems always reach <i>maximum entropy</i> at equilibrium?					
	Explain	1				
22.	A "heat term" in a chemical equation shows what is happening to the					
		ally has nothing to do with the rs are either entropy or enthalpy)				
23.	As a reaction approaches equilibrium, the rate of the forward reaction					
	while the rate of the reverse reaction					
	Once e	equilibrium is reached, the rat	es become			
24.	Consid	ler the reaction: $BaCO_{3(s)}$ -	+ heat \rightleftharpoons BaO _(s) ? CO _{2(g)}			
		one of the following observat	ions will indicate that the reaction has most likely achieved			
	b) c)	The mass of the system become The concentration of $BaO_{(s)}$ All the $BaCO_3$ is consumed. The gas pressure of the system	becomes constant			
	Your a	Your answer is Explain why				
25.	Consid	ler the following reaction: Fe	$e^{3+}(aq) + ?SCN^{-}(aq) \iff FeSCN^{2+}(aq)$			
			a solution of KSCN. As equilibrium is being established, and the [FeSCN ²⁺]			
Wor	ksheet 2	2-1 - Equilibrium, Enthalp	y and Entropy Page 4			

29. Given the following potential energy diagram for a reaction:

Explain how you arrived at your answer

Progress of Reaction

Explain in terms of enthalpy and entropy, how you could end up with a fairly high ratio of products to reactants.