Kinetic and Poten	itial Energy Work	sheet Name _		
Classify the following as a type	of potential energy or	r kinetic energy (use the lette	ers K or P)	
1. A bicyclist pedaling up a	a hill	2. An archer with his bo	w drawn	
3. A volleyball player spiki	ing a ball	4. A baseball thrown to	second base	
5. The chemical bonds in s	ugar	6. The wind blowing thr	ough your hair _	
7. Walking down the street	·	8. Sitting in the top of a	tree _	
9. A bowling ball rolling do	own the alley	10. A bowling ball sitting	g on the rack	
11. Kinetic:12. Kinetic:13. Potential:14. Potential:				
♦ The		nergy – what does it depende e		it has
• The greater the	of a moving	object, the		
olve the following word probl			as (Be sure to show you	ı <u>r work</u> !)
v = velocity or speed	m = mass in kg	g = 10 m/s/s	h = height in mei	ters
_	with a mass of 2.1 kg energy. Calcula	The ball leaves your hand vate it.	vith a speed of 30 m/s.	The ball
16. A baby carriage is sittin 1.5 kg. The carriage ha		hat is 21 m high. The carrias _ energy. Calculate it.	ge with the baby has a n	nass of
17. A car is traveling with Calculate it.	a velocity of 40 m/s ar	nd has a mass of 1120 kg. T	he car has	energ

18.	A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg. The block has energy. Calculate it.
19.	A roller coaster is at the top of a 72 m hill and weighs 134 kg. The coaster (at this moment) has energy. Calculate it.
20.	There is a bell at the top of a tower that is 45 m high. The bell weighs 19 kg. The bell has energy. Calculate it.
21	. Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s.
22	. If the roller coaster car in the above problem were moving with twice the speed , then what would be its new kinetic energy?
23	. A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the potential energy of the loaded cart at the height of the seat-top?
24	. A 75-kg refrigerator is located on the 70 th floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator?
25	. The potential energy of a 40-kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy?
•	IF most of the energy we use on earth comes from the sun – how does that energy (light and thermal) end up
	♦ As energy in our food
	 As energy of wind or moving water As energy that powers our lights
	• As energy when we move around

	Law of Conservation of Ene	rgy	
Energy can be neither	by ordinary means.		
Energy can be	from one form to another.		
The total amount of	is the	_before	
and after any energy transforma	ation.		
	Energy Transfer		
Energy TRANSFER is the from one object to another object. Example : A cup of hot tea has energy. Some of this thermal energy is			
to the particles in cold link, in	which you put to make the coffee coo	iei.	
	Energy Transformation		
♦ A change from one form of	energy to another.		
Single Transformations			
• Occur when	form of	needs to be	
	nother to get work done.		
♦ Multiple Transformations	of energy transformation	tions are needed to do work	
♦ An objects energy ca		tions are needed to do work	
	kinetic energy	and potential energy	
♦ As velocity	kinetic energy	and potential energy	
	LATIONSHIP KE AND PE HAVE?_		
♦ As you move up to the first l	Roller Coasters Does energy get transferred or trans nill on a roller coaster the distance bet	ween the coaster and the Earth	
	ting in an increase of		
	u have the Gravi		
	the hill you		
♦ At the bottom of the hill righ	nt before it goes back upward the	, but the	
• As it starts to move up the no	ext hill or loop KE is	back into GPE	
	BANKE	D CURVE	