| Kinetic and Poten | itial Energy Work | sheet Name _ | | | |---|---------------------------------------|--|--------------------------|--------------------| | Classify the following as a type | of potential energy or | r kinetic energy (use the lette | ers K or P) | | | 1. A bicyclist pedaling up a | a hill | 2. An archer with his bo | w drawn | | | 3. A volleyball player spiki | ing a ball | 4. A baseball thrown to | second base | | | 5. The chemical bonds in s | ugar | 6. The wind blowing thr | ough your hair _ | | | 7. Walking down the street | · | 8. Sitting in the top of a | tree _ | | | 9. A bowling ball rolling do | own the alley | 10. A bowling ball sitting | g on the rack | | | 11. Kinetic:12. Kinetic:13. Potential:14. Potential: | | | | | | ♦ The | | nergy – what does it depende
e | | it has | | • The greater the | of a moving | object, the | | | | olve the following word probl | | | as (Be sure to show you | ı <u>r work</u> !) | | v = velocity or speed | m = mass in kg | g = 10 m/s/s | h = height in mei | ters | | _ | with a mass of 2.1 kg energy. Calcula | The ball leaves your hand vate it. | vith a speed of 30 m/s. | The ball | | 16. A baby carriage is sittin
1.5 kg. The carriage ha | | hat is 21 m high. The carrias
_ energy. Calculate it. | ge with the baby has a n | nass of | | 17. A car is traveling with Calculate it. | a velocity of 40 m/s ar | nd has a mass of 1120 kg. T | he car has | energ | | 18. | A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg. The block has energy. Calculate it. | |-----|--| | 19. | A roller coaster is at the top of a 72 m hill and weighs 134 kg. The coaster (at this moment) has energy. Calculate it. | | 20. | There is a bell at the top of a tower that is 45 m high. The bell weighs 19 kg. The bell has energy. Calculate it. | | 21 | . Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s. | | 22 | . If the roller coaster car in the above problem were moving with twice the speed , then what would be its new kinetic energy? | | 23 | . A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the potential energy of the loaded cart at the height of the seat-top? | | 24 | . A 75-kg refrigerator is located on the 70 th floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator? | | 25 | . The potential energy of a 40-kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy? | | • | IF most of the energy we use on earth comes from the sun – how does that energy (light and thermal) end up | | | ♦ As energy in our food | | | As energy of wind or moving water As energy that powers our lights | | | • As energy when we move around | | | | | | Law of Conservation of Ene | rgy | | |---|--|--------------------------------|--| | Energy can be neither | by ordinary means. | | | | Energy can be | from one form to another. | | | | The total amount of | is the | _before | | | and after any energy transforma | ation. | | | | | | | | | | Energy Transfer | | | | Energy TRANSFER is the from one object to another object. Example : A cup of hot tea has energy. Some of this thermal energy is | | | | | | | | | | to the particles in cold link, in | which you put to make the coffee coo | iei. | | | | Energy Transformation | | | | ♦ A change from one form of | energy to another. | | | | Single Transformations | | | | | • Occur when | form of | needs to be | | | | nother to get work done. | | | | ♦ Multiple Transformations | of energy transformation | tions are needed to do work | | | ♦ An objects energy ca | | tions are needed to do work | | | | kinetic energy | and potential energy | | | | | | | | ♦ As velocity | kinetic energy | and potential energy | | | | LATIONSHIP KE AND PE HAVE?_ | | | | ♦ As you move up to the first l | Roller Coasters Does energy get transferred or trans nill on a roller coaster the distance bet | ween the coaster and the Earth | | | | ting in an increase of | | | | | u have the Gravi | | | | | the hill you | | | | | | | | | ♦ At the bottom of the hill righ | nt before it goes back upward the | , but the | | | | | | | | • As it starts to move up the no | ext hill or loop KE is | back into GPE | | | | BANKE | D
CURVE | |