Unit 2 - Chemical Equilibrium

Chemistry 12 Worksheet 2-2 LeChatelier's Principle

	which way the following equilibrium systems will shift when the <i>total pressure ed</i> .(NOTE: Some may have no shift)
a).	$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ Answer
b).	$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$ Answer
c).	$4NH_{3(g)} + 5O_{2(g)} \rightleftharpoons 4NO_{(g)} + 6H_2O_{(g)}$ Answer
Which v	way will the following equilibrium shift if the <i>total pressure</i> on the system is <i>ed</i> ?
2C	$_{2}H_{6(g)} + 7O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 6H_{2}O_{(g)}$ Answer
Explain	why a flack filled with NO ₂₍₂₎ and N ₂ O ₄₍₂₎ will get darker when heated. Use
Explain equatio	why a flask filled with NO _{2(g)} and N ₂ O _{4(g)} will get darker when heated. Use n: $N_2O_{4(g)}$ + heat $\rightleftharpoons 2NO_{2(g)}$

Unit 2 - Chemical Equilibrium

6. *Hydrogen peroxide* is decomposed as follows:

$$H_2O_{2(l)} \rightleftharpoons H_{2(g)} + O_{2(g)} \quad \Delta H = +187 \, kJ$$

Predict the *direction of equilibrium shift* by each of the following imposed changes:

- a) *Increase* the [H₂] Answer _____
- b) **Decrease** the [O₂] Answer _____
- c) Decrease the total pressure Answer ____
- d) Increase the temperature Answer
- e) Add MnO₂ as a *catalyst*...... Answer
- 7. Consider the following reaction at equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

a) Addition of more H₂ gas to the container will do what to the rate of the forward reaction?

Answer _____

b) If, for a while, the rate of the *forward* reaction is *greater than* the rate of the *reverse* reaction, what will happen to the [HI]?

Answer _____

c) As the [HI] is increased, what will happen to the rate of the reverse reaction?

Answer ____

d) When the rate of the *reverse* reaction once again becomes *equal* to the rate of the

forward reaction, a new______ has been reached.

e) Since the rate of the *forward* reaction was, for a while, greater than the rate of the *reverse* reaction, the new equilibrium will have a slightly higher concentration of

_____ and a slightly lower concentration of _____ &

Unit 2 - Chemical Equilibrium

f) Sketch a graph of the relative concentrations of each species as the process outlined in **a-e** of this question (*on the last page*) is carried out.

TIME →

8. Consider the following equilibrium and state which way (left or right) the equilibrium shifts when each of the changes below are made.

Heat +
$$CH_{4(g)} + 2H_2S_{(g)} \rightleftharpoons CS_{2(g)} + 4H_{2(g)}$$

- a) CH₄ gas is added Answer _____
- b) CS₂ gas is removed...... Answer _____
- c) H₂ gas is added Answer _____
- d) The *total volume* of the container is decreased Answer _____
- e) The temperature is increased Answer _____
- f) The total pressure is decreased Answer _____
- g) Helium gas is added to increase the total pressure.... Answer _____
- 9. Using the following equilibrium, state what would happen to the equilibrium *partial pressure of CH*₃*OH gas* when each of the following changes are made:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$
 $\Delta H = -75.2 \text{ kJ}$

- a) CO gas is added to the container Answer _____
- b) The *temperature* is increased Answer _____
- c) The *total pressure* of the system is increased....... Answer

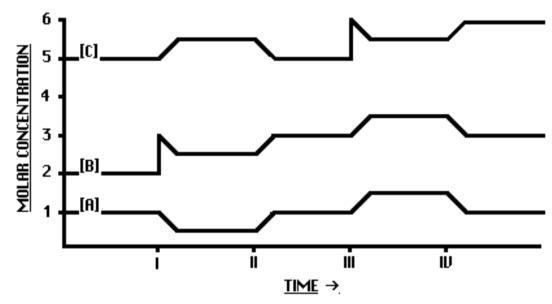
Che	mistry 12 $CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} \qquad \Delta H = 0$	Unit 2 - Chemical Equilibrium = -75.2 kJ		
	d) H ₂ gas is removed from the system	Answer		
	e) A catalyst is added	Answer		
	f) The <i>total volume</i> of the container is increased	Answer		
10.	For the reaction: $2NO_{(g)} + Cl_{2(g)} \iff 2NOCl_{(g)}$	$\Delta H = -77 \ kJ$		
	state the optimal pressure and temperature conditions production of NOCl.(high or low?)	s necessary for maximum		
	1pressure 2	temperature		
11.	For the reaction: $3H_{2(g)} + N_{2(g)} \rightleftarrows 2NH_{3(g)} + heat$			
	state the optimal conditions for a high yield of ammonia	a (NH ₃). (high or low?)		
	1pressure 2	temperature		
12.	Given the following equilibrium system, state which way the equilibrium will shift when the changes below are made: $2C_2H_{6(g)} + 7O_{2(g)} \iff 4CO_{2(g)} + 6H_2O_{(g)} + heat$			
	a) The <i>volume</i> of the container is halved	Answer		
	b) The temperature is decreased	Answer		
	c) CO ₂ is added to the container	Answer		
	d) The total pressure is increased	Answer		
	e) O_2 gas is removed from the system	Answer		
	f) Neon gas is added to increase the total pressure	Answer		
	h) A catalyst is added	Answer		
13.	Using the equilibrium: $N_{2(g)} + O_{2(g)} + heat$ Explain why nitric oxide (NO) does not generally form in the internal combustion engine of an automobile or during	the atmosphere but is formed in		

Unit 2 - Chemical Equilibrium

14. Explain why a syringe containing NO₂ gas will first get *darker* and *then lighter* in colour when

compressed. Use the equilibrium equation:

$$N_2O_{4(g)}$$
 + heat \rightleftharpoons $2NO_{2(g)}$ colourless brown



15. Explain why a flask containing NO₂ will get *lighter* in colour when put into *ice water*. Use the equation:

$$N_2O_{4(g)}$$
 + heat \rightleftharpoons $2NO_{2(g)}$ colourless brown

16. Given the following graph showing the concentrations of species A, B and C, state what changes in **temperature** or **concentration** are responsible for each of the shifts shown on the graph. The equilibrium equation is:

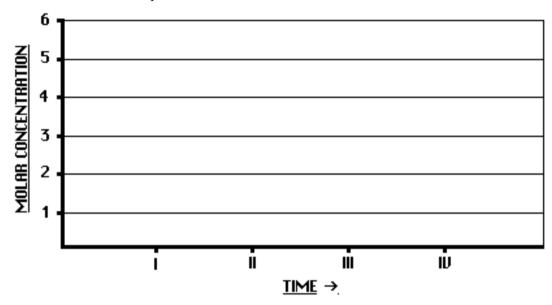
$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} \qquad \Delta H = -65 \text{ kJ}$$

- a) At time I, the
- b) At time II, the
- c) At time III, the
- d) At time IV, the _____

Unit 2 - Chemical Equilibrium

17. Given the equilibrium equation:

$$XY_{(g)}$$
 + heat \rightleftharpoons $X_{(g)}$ + $Y_{(g)}$


If initially, at equilibrium, the [XY] = 3.0 M, the [X] = 5.0 M and the [Y] = 6.0 M, draw a graph *similar to the one in question 16* showing qualitatively what happens to the concentrations of each species as the following changes are made to the system:

Time I - The *temperature is increased*.

Time II - Some X(g) is *added* to the system

Time III - Some $Y_{(g)}$ is *removed* from the system

Time IV - The temperature is decreased.

18. For each of the following reactions, predict whether the *entropy* increases or decreases.

c) $MgCO_{3(s)} + 2H_3O^+_{(aq)} \rightleftharpoons Mg^{2+}_{(aq)} + 3H_2O_{(1)} + CO_{2(g)}$

Answer _____

d) $Ag^{+}(aq) + Cl^{-}(aq) \rightleftharpoons AgCl_{(s)}$ Answer

e) $2C_2H_{2(g)} + 5O_{2(g)} \rightleftharpoons 4CO_{2(g)} + 2H_2O_{(g)}$ Answer _____

Unit 2 - Chemical Equilibrium

- 19. On the basis of **enthalpy** and **entropy**, predict whether each of the following reactions would be *spontaneous as written* or not at room temperature.
 - a) $N_{2(g)} + 2O_{2(g)} \rightleftharpoons 2NO_{2(g)}$ $\Delta H = +67.7 \text{ kJ}$

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____

b) $2C_{(s)} + O_{2(g)} \rightleftharpoons 2CO_{(g)} + 110 \text{ kJ}$

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____

c) $2Pb(NO_3)_{2(s)} + 597 \text{ kJ} \rightleftharpoons 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$

Minimum enthalpy favours (reactants/products)

Maximum entropy favours (reactants/products)

Spontaneous as written? (yes/no) Answer _____