Name:	 	
Hour:	 Date:	

Chemistry: Graham's Law

Do the following problems, showing your work and including all proper units.

- 1. If neon gas travels at 400 m/s at a given temperature, calculate the velocity of butane, C₄H₁₀, at the same temperature.
- Hydrogen sulfide, H₂S, has a very strong rotten egg odor. Methyl salicylate, C₈H₈O₃, has a wintergreen odor, and benzaldehyde, C₇H₆O, has a pleasant almond odor. If the vapors for these three substances were released at the same time from across a room, which odor would you smell first? Show your work and explain your answer.
- 3. A nitrogen molecule travels at about 505 m/s at room temperature. Find the velocity of a helium atom at the same temperature.
- 4. A carbon dioxide molecule travels at 45.0 m/s at a certain temperature. At the same temperature, find the velocity of an oxygen molecule.
- 5. Nitrogen gas effuses through an opening 1.59 times faster than does an unknown gas.
 - a. Calculate the molecular mass of the unknown gas.
 - b. Make a reasonable prediction as to what the unknown gas is.
- 6. An unknown gas diffuses 1.62 times slower than does oxygen gas.
 - a. Calculate the molecular mass of the unknown gas.

b. Make a reasonable prediction as to what the unknown gas is.

Answers:	1.	236 m/s	4.	52.8 m/s	6a.	84 a.m.u.
	2.	H ₂ S	5a.	71 a.m.u.	6b.	Kr
	3.	1336 m/s	5b.	Cl ₂		

Chemistry: Graham's Law

Do the following problems, showing your work and including all proper units.

1. If neon gas travels at 400 m/s at a given temperature, calculate the velocity of butane, C₄H₁₀, at the same temperature.

 Hydrogen sulfide, H₂S, has a very strong rotten egg odor. Methyl salicylate, C₈H₈O₃, has a wintergreen odor, and benzaldehyde, C₇H₆O, has a pleasant almond odor. If the vapors for these three substances were released at the same time from across a room, which odor would you smell first? Show your work and explain your answer.

$$H_2S = 34 \text{ amu}$$

 $C_8H_8O_3 = 152 \text{ amu}$
 $C_7H_6O = 106 \text{ amu}$

All substances have the same kinetic energy (all are at the same temperature). Therefore, the lightest molecules will move fastest.

3. A nitrogen molecule travels at about 505 m/s at room temperature. Find the velocity of a helium atom at the same temperature.

$$\begin{split} & N_{2} \begin{cases} m_{2} = 28 \text{ g} \\ v_{2} = 505 \text{ m/s} \\ \text{Helium} \begin{cases} m_{1} = 4 \text{ g} \\ v_{1} = ? \text{ m/s} \end{cases} & \frac{v_{1}}{v_{2}} = \sqrt{\frac{m_{2}}{m_{1}}} & \frac{v_{1}}{505 \text{ m/s}} = \sqrt{\frac{28 \text{ g}}{4 \text{ g}}} & v_{1} = 1336 \text{ m/s} \end{split}$$

4. A carbon dioxide molecule travels at 45.0 m/s at a certain temperature. At the same temperature, find the velocity of an oxygen molecule.

$$CO_{2}\begin{cases} m_{2} = 44 \text{ g} \\ v_{2} = 45 \text{ m/s} \\ O_{2} \begin{cases} m_{1} = 32 \text{ g} \\ v_{1} = ? \text{ m/s} \end{cases} \qquad \frac{v_{1}}{v_{2}} = \sqrt{\frac{m_{2}}{m_{1}}} \qquad \frac{v_{1}}{45 \text{ m/s}} = \sqrt{\frac{44 \text{ g}}{32 \text{ g}}} \qquad v_{1} = 52.8 \text{ m/s}$$

- 5. Nitrogen gas effuses through an opening 1.59 times faster than does an unknown gas.
 - a. Calculate the molecular mass of the unknown gas.

Nitrogen
$$\begin{cases} m_2 = 28 \text{ amu} \\ v_2 = 1.59 x \\ \text{Unknown} \end{cases} \begin{cases} m_1 = 58 \text{ amu} \\ v_1 = 1x \end{cases} = \sqrt{\frac{m_2}{m_1}} \\ \frac{1.59 x}{1x} = \sqrt{\frac{m_2}{28 \text{ g}}} \\ m_2 = 70.8 \text{ amu} \end{cases}$$

b. Make a reasonable prediction as to what the unknown gas is.

Chlorine gas, Cl_2 2 Cl @ 35.453 amu = 70.9 amu

Chemistry: Graham's Law

6. An unknown gas diffuses 1.62 times slower than does oxygen gas.

a. Calculate the molecular mass of the unknown gas.

Oxygen $\begin{cases} m_1 = 32 \text{ amu} \\ v_2 = 1.62x \\ m_2 = ? \text{ amu} \end{cases}$ $\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}} \qquad \frac{1.62x}{1x} = \sqrt{\frac{m_2}{32 \text{ amu}}} \qquad m_2 = 84 \text{ amu}$ Unknown $\begin{cases} m_2 = ? \text{ amu} \\ v_2 = 1x \end{cases}$

b. Make a reasonable prediction as to what the unknown gas is.

Krypton, Kr molecular mass is 83.80 amu

Answers:

1. 236 m/s 2. H₂S 3. 1336 m/s 4. 52.8 m/s 5a. 71 a.m.u. 5b. Cl₂

6a. 84 a.m.u. 6b. Kr