

AP Chemistry (mrichards@horton.ednet.ns.ca)

Ksp Problems Worksheet

- 1. Calculate the K_{sp} for each of the salts whose solubility is listed below.
 - a) $CaSO_4 = 5.0 \times 10^{-3} \text{ mol/L}$
 - b) MgF₂ = 2.7×10^{-3} mol/L
 - c) $AgC_2H_3O_2 = 1.02 g/100 mL$
 - d) $SrF_2 = 12.2 \text{ mg}/100 \text{ mL}$
- 2. Calculate
 - a) the solubility in moles/L of each of three salts and
 - b) the concentration of the cations in mg/mL in each of the saturated solutions.
 - i) AgCN $K_{sp} = 2.0 \times 10^{-12}$
 - ii) BaSO₄ $K_{sp} = 1.5 \times 10^{-9}$
 - iii) FeS $K_{sp} = 3.7 \times 10^{-19}$
 - iv) Mg(OH)₂ $K_{sp} = 9.0 \times 10^{-12}$
 - v) $Ag_2S K_{sp} = 1.6 \times 10^{-49}$
 - vi) $CaF_2 K_{sp} = 4.9 \times 10^{-11}$
- 3. Consider these slightly soluble salts:
 - i) PbS $K_{sp} = 8.4 \times 10^{-28}$
 - ii) PbSO₄ $K_{sp} = 1.8 \times 10^{-8}$
 - iii) $Pb(IO_3)_2 K_{sp} = 2.6 \times 10^{-13}$
 - a) Which is the most soluble?
 - b) Calculate the solubility in moles/L for PbSO₄.
 - c) How many grams of PbSO₄ dissolve in 1 L of solution?

d) How can you decrease the concentration of $Pb^{2+}(aq)$ in a saturated solution of $PbSO_4$ solution?

- e) What is the concentration in moles/L of PbS in a saturated solution of the salt?
- 4. For each of these substances, calculate the milligrams of metallic ion that can remain at equilibrium in a solution having a $[OH^-] = 1.0 \times 10^{-4} \text{ mol/L}.$
 - a) $Cu(OH)_2 K_{sp} = 1.6 \times 10^{-9}$
 - b) Fe(OH)₃ $K_{sp} = 6.0 \times 10^{-38}$
 - c) Mg(OH)₂ $K_{sp} = 6.0 \times 10^{-12}$

Mr. Richards AP Chemistry