AP Chemistry

(mrichards@horton.ednet.ns.ca)

Ksp Problems Worksheet Solutions

1. a) $\mathrm{CaSO}_{4}<===\Longrightarrow \mathrm{Ca}^{+2}+\mathrm{SO}_{4}^{-2}$ If the solubility is $5.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ then we $x \quad x \quad x \quad$ will let ' x ' be equal to this amount.
$K_{\text {sp }}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{SO}_{4}^{-2}\right]=[\mathrm{x}][\mathrm{x}]=5.0 \times 10^{-3}$
Therefore $K_{\text {sp }}=\left(5.0 \times 10^{-3}\right)^{2}$
$K_{\text {sp }}=2.5 \times 10^{-5}$
b) $\mathbf{M g F}_{2}<===>\mathbf{M g}^{+2}+\underset{\mathbf{x}}{\mathbf{2}} \mathbf{F}^{-1}$
$K_{\text {sp }}=\left[\mathbf{M g}^{+2}\right]\left[F^{-1}\right]^{2}=[x][2 x]^{2}=2.7 \times 10^{-3}$
$K_{\text {sp }}=4 \mathbf{x}^{3}$
Therefore $x=4\left(2.7 \times 10^{-3}\right)^{3}$
$K_{\text {sp }}=7.8 \times 10^{-8}$
c) There is $\mathbf{1 . 0 2}$ grams dissolved in $\mathbf{1 0 0} \mathbf{~ m L}$. this must first be converted to moles/L.
moles $=$ grams $/$ molecular mass
moles $=1.02 \mathrm{~g} / 166.89 \mathrm{~g} / \mathrm{moles}=\mathbf{0 . 0 0 6}$ moles
$\left[\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=\mathrm{moles} / \mathrm{L}=\mathbf{0 . 0 0 6} \mathrm{moles} / \mathbf{0 . 1} \mathrm{L}=0.06 \mathrm{moles} / \mathrm{L}$
$\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<===>\mathrm{Ag}^{+1}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1} \quad$ If the solubility is $0.06 \mathrm{~mol} / \mathrm{L}$ then we $x \quad x \quad x \quad$ will let ' x ' be equal to this amount.
$K_{\text {sp }}=\left[\mathrm{Ag}^{+1}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-1}\right]=[\mathrm{x}][\mathrm{x}]=\mathbf{0 . 0 6}$
Therefore $\mathrm{K}_{\text {sp }}=(0.06)^{2}$
$K_{\text {sp }}=3.6 \times 10^{-3}$
d) Convert $\mathbf{1 2 . 2} \mathbf{~ m g}$ in 100 mL of water into moles/L
$\mathbf{1 2 . 2} \mathbf{~ m g} / 1000 \mathrm{mg} / \mathrm{gram}=\mathbf{0 . 0 1 2 2}$ grams
moles $=$ grams $/$ molecules mass $=\mathbf{0 . 0 1 2 2}$ grams/ $\mathbf{1 2 5 . 6 2}$ grams $/$ mole

$$
=9.7 \times 10^{-5} \text { moles }
$$

$\left[\mathrm{SrF}_{2}\right]=$ moles $/ \mathrm{L}=9.7 \times 10^{-5} / 0.1 \mathrm{~L}=9.7 \times 10^{-4} \mathrm{moles} / \mathrm{L}$

$\mathrm{SrF}_{2}<====>$	$\mathrm{Sr}^{+2}+2 \mathrm{~F}^{-1}$	If the solubility is $9.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ then we
\mathbf{x}	2x	will let ' x ' be equal to this amount.

$K_{\text {sp }}=\left[\mathbf{M g}^{+2}\right]\left[F^{-1}\right]^{2}=[x][2 x]^{2}=9.7 \times 10^{-4}$
$K_{\text {sp }}=\mathbf{4 x}^{3}$
Therefore $\mathrm{x}=4\left(9.7 \times 10^{-4}\right)^{3}$

AVRSB AP Chemistry

$$
K_{\text {sp }}=3.0 \times 10^{-9}
$$

2. i) AgCN has a $\mathrm{K}_{\text {sp }}$ of 2.0×10^{-12}
$\mathrm{AgCN}<====\mathbf{A g}^{+1}+\mathbf{C N}^{-1}$
$\mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$
K sp $=\left[\mathrm{Ag}^{+1}\right]\left[\mathrm{CN}^{-1}\right]$
$2.0 \times 10^{-12}=(x)(x)$
$\mathrm{x}=\left(2.0 \times 10^{-12}\right)^{1 / 2}$
$x=1.4 \times 10^{-9} \mathrm{moles} / \mathrm{L}$ (This is the solubility of the silver cyanide)
molecular mass of $\mathbf{A g}^{+1}=107.87 \mathrm{~g} /$ mole
Therefore $107.87 \mathrm{~g} /$ mole X $1.4 \times 10^{-9} \mathrm{~mole} / \mathrm{L}=1.51 \times 10^{-7} \mathrm{~g} / \mathrm{L}$

$$
=1.51 \times 10^{-7} \mathrm{mg} / \mathrm{mL}
$$

ii) BaSO_{4} has a K $\mathrm{K}_{\text {p }}$ of 1.5×10^{-9}
$\mathrm{AgCN}<===\mathrm{Ba}^{+2}+\mathrm{SO}_{4}{ }^{-2}$
$\mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$
$\mathrm{Ksp}=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{SO}_{4}{ }^{-2}\right]$
$1.5 \times 10^{-9}=(\mathrm{x})(\mathrm{x})$
$\mathrm{x}=\left(1.5 \mathrm{X} \mathrm{10} 0^{-9}\right)^{1 / 2}$
$x=3.9 \times 10^{-5} \mathrm{moles} / \mathrm{L}$ (This is the solubility of the barium sulphate)
molecular mass of $\mathrm{Ba}^{+2}=137.33 \mathrm{~g} /$ mole
Therefore $137.33 \mathrm{~g} / \mathrm{mole} \times 3.9 \times 10^{-5} \mathrm{~mole} / \mathrm{L}=5.36 \times 10^{-3} \mathrm{~g} / \mathrm{L}$

$$
=5.36 \times 10^{-3} \mathrm{mg} / \mathrm{mL}
$$

iii) FeS has a $K_{\text {sp }}$ of 3.7×10^{-19}
$\mathrm{FeS}<===\Rightarrow \mathrm{Fe}^{+2}+\mathrm{S}^{-2}$
$\mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$
$\mathrm{Ksp}=\left[\mathrm{Fe}^{+2}\right]\left[\mathrm{S}^{-2}\right]$
$3.7 \times 10^{-19}=(x)(x)$
$\mathrm{x}=\left(3.7 \times 10^{-19}\right)^{1 / 2}$
$x=6.1 \times 10^{-10} \mathrm{moles} / \mathrm{L}$ (This is the solubility of the iron(II) sulphate)
molecular mass of $\mathrm{Fe}^{+2}=55.85 \mathrm{~g} / \mathrm{mole}$
Therefore $55.85 \mathrm{~g} / \mathrm{mole} \times 6.1 \times 10^{-10} \mathrm{~mole} / \mathrm{L}=3.41 \times 10^{-8} \mathrm{~g} / \mathrm{L}$

$$
=3.41 \times 10^{-8} \mathrm{mg} / \mathrm{mL}
$$

iv) $\mathrm{Mg}(\mathrm{OH})_{2}$ has a $K_{\text {sp }}$ of 9.0×10^{-12}
$\operatorname{Mg}(\mathbf{O H})_{2}<===\mathrm{Mg}^{+2}+2 \mathbf{O H}^{-1}$
$\mathbf{x} \quad \mathbf{x} \quad 2 \mathbf{x}$
$\mathbf{K s p}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2}$
Mr. Richards AP Chemistry

AVRSB AP Chemistry

$9.0 \times 10^{-12}=(x)(2 x)^{2}$
$x=\left(\underline{9.0 \times 10^{-12}}\right)^{1 / 3}$
(4)
$x=1.3 \times 10^{-4}$ moles $/ \mathrm{L}$ (This is the solubility of the magnesium hydroxide)
molecular mass of $\mathbf{M g}^{+2}=\mathbf{2 4 . 3 1} \mathbf{g} /$ mole
Therefore $24.31 \mathrm{~g} / \mathrm{mole} \times 1.3 \times 10^{-4} \mathrm{~mole} / \mathrm{L}=3.18 \times 10^{-3} \mathrm{~g} / \mathrm{L}$

$$
=3.18 \times 10^{-3} \mathrm{mg} / \mathrm{mL}
$$

v) $\mathrm{Ag}_{2} \mathrm{~S}$ has a $\mathrm{K}_{\text {sp }}$ of 1.6×10^{-49}
$\mathrm{Ag}_{2} \mathrm{~S}<====>2 \mathrm{Ag}^{+1}+\mathrm{S}^{-2}$
$\mathbf{x} \quad 2 \times \quad x$
$K s p=\left[\mathrm{Ag}^{+1}\right]^{2}\left[\mathrm{~S}^{-2}\right]$
$1.6 \times 10^{-49}=(2 \mathrm{x})^{2}(\mathrm{x})$
$\mathrm{x}=\left(\underline{1.6 \times 10^{-49}}\right)^{1 / 3}$
(4)
$x=3.4 \times 10^{-17} \mathrm{moles} / \mathrm{L}$ (This is the solubility of the silver sulphide)
molecular mass of 2 moles of $\mathrm{Ag}^{+1}=215.74 \mathrm{~g} / \mathrm{mole}$
Therefore $215.74 \mathrm{~g} / \mathrm{mole} \times 3.4 \times 10^{-17} \mathrm{~mole} / \mathrm{L}=7.33 \times 10^{-15} \mathrm{~g} / \mathrm{L}$

$$
=7.33 \times 10^{-15} \mathrm{mg} / \mathrm{mL}
$$

vi) CaF_{2} has a K_{sp} of 4.9×10^{-11}
$\mathrm{CaF}_{2}<===>\mathrm{Ca}^{+2}+2 \mathrm{~F}^{-1}$
$\mathbf{x} \quad \mathbf{x} \quad 2 \mathbf{x}$
$\mathrm{Ksp}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{F}^{-1}\right]^{2}$
$4.9 \times 10^{-11}=(\mathrm{x})(2 \mathrm{x})^{2}$
$\mathrm{x}=\left(\underline{4.9 \times 10^{-11}}\right)^{1 / 3}$
(4)
$x=2.31 \times 10^{-4} \mathrm{moles} / \mathrm{L}$ (This is the solubility of the calcium fluoride)
molecular mass of $\mathrm{Ca}^{+2}=40.08 \mathrm{~g} /$ mole
Therefore $\mathbf{4 0 . 0 8} \mathbf{g} /$ mole $\times 2.31 \times 10^{-4} \mathrm{~mole} / \mathrm{L}=9.26 \times 10^{-3} \mathrm{~g} / \mathrm{L}$
$=9.26 \times 10^{-3} \mathrm{mg} / \mathrm{mL}$
3.

	$\mathrm{K}_{\text {sp }}$		Solubililty
PbS	8.4×10^{-28}	$K_{\text {sp }}=x^{2}$	$2.9 \times 10^{-14} \mathrm{~mole} / \mathrm{L}$
PbSO_{4}	1.8×10^{-8}	$\mathrm{~K}_{\text {sp }}=\mathrm{x}^{2}$	$\mathbf{1 . 3 4 \times 1 0 ^ { - 4 } \mathrm { mole } / \mathrm { L }}$
$\mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}$	2.6×10^{-13}	$\mathrm{~K}_{\text {sp }}=4 \mathrm{x}^{3}$	$4.02 \times 10^{-5} \mathrm{~mole} / \mathrm{L}$

a) The lead(II) sulphate is the most soluble.
b) The solubility of the lead(II) sulphate is $1.34 \times 10^{-4} \mathrm{moles} / \mathrm{L}$

AVRSB AP Chemistry

c) Molecular mass of PbSO 4 is $303.27 \mathrm{~g} / \mathrm{mole}$

$$
\begin{aligned}
\mathbf{m} & =\mathbf{n ~ X ~ M} \\
& =\mathbf{1 . 3 4 X 1 0} 0^{-4} \mathrm{moles} / \mathrm{L} \times 303.27 \mathrm{grams} / \mathrm{mole} \\
& =0.041 \mathrm{grams} / \mathrm{L}
\end{aligned}
$$

d) Use the common ion effect and add something with sulphate ion in it that dissociates easily and more readily. i.e., $\mathrm{H}_{2} \mathrm{SO}_{4}$
e) The PbS concnetration is $2.9 \times 10^{-14} \mathrm{moles} / \mathrm{L}$
4. a) $\mathrm{Cu}(\mathrm{OH})_{2}<==\mathrm{Cu}^{+2}+2 \mathrm{OH}^{-1}$
$K s p=\left[\mathrm{Cu}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2}$
therefore $\left[\mathrm{Cu}^{+2}\right]=\frac{\mathrm{Ksp}}{\left[\mathrm{OH}^{-1}\right]^{2}}=\frac{1.6 \times 10^{-9}}{\left(1.0 \times 10^{-4}\right)^{2}}=\frac{1.6 \times 10^{-9}}{1.0 \times 10^{-8}}=0.16 \mathrm{~mole} / \mathrm{L}$

$$
\begin{aligned}
\text { grams } & =\text { moles } * \text { molecular mass } \\
& =0.16 \mathrm{moles} / \mathrm{L} * 63.55 \mathrm{~g} / \mathrm{mole} \\
& =10.168 \mathrm{~g} / \mathrm{L} \\
& =10168 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

b) $\mathrm{Fe}(\mathrm{OH})_{3}<===\mathrm{Fe}^{+1}+3 \mathrm{OH}^{-1}$

$$
\begin{aligned}
\begin{array}{l}
\mathrm{Ksp}=\left[\mathrm{Fe}^{+1}\right]\left[\mathrm{OH}^{-1}\right]^{3} \\
\text { therefore }\left[\mathrm{Fe}^{+2}\right]
\end{array} & =\frac{\mathrm{Ksp}^{-1}}{\left[\mathrm{OH}^{-1}\right]^{3}}=\frac{6.0 \times 10^{-38}}{\left(1.0 \times 10^{-4}\right)^{3}}=\frac{6.0 \times 10^{-38}}{1.0 \times 10^{-12}} \\
& =6.0 \times 10^{-26} \mathrm{~mole} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
\text { grams } & =\text { moles } * \text { molecular mass } \\
& =6.0 \times 10^{-26} \mathrm{~mole} / \mathrm{L} * 55.85 \mathrm{~g} / \text { mole } \\
& =3.35 \times 10^{-24} \mathrm{~g} / \mathrm{L} \\
& =3.3 \times 10^{-21} \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

c) $\mathbf{M g}(\mathbf{O H})_{2}<==>\mathbf{M g}^{+2}+2 \mathbf{O H}^{-1}$

$$
\begin{aligned}
& \mathrm{Ksp}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-1}\right]^{2} \\
& \text { therefore }\left[\mathrm{Mg}^{+2}\right]=\frac{\mathrm{Ksp}}{\left[\mathrm{OH}^{-1}\right]^{2}}=\frac{6.0 \times 10^{-12}}{\left(1.0 \times 10^{-4}\right)^{2}}=\frac{6.0 \times 10^{-12}}{1.0 \times 10^{-8}} \\
& =6.0 \times 10^{-4} \mathrm{~mole} / \mathrm{L} \\
& \text { grams }=\text { moles } * \text { molecular mass } \\
& =6.0 \times 10^{-4} \mathrm{~mole} / \mathrm{L} * 24.31 \mathrm{~g} / \mathrm{mole} \\
& =1.4586 \times 10^{-2} \mathrm{~g} / \mathrm{L}=0.014586 \mathrm{~g} / \mathrm{L} \\
& =14.586 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

