

AP Chemistry (mrichards@horton.ednet.ns.ca)

Ksp Problems Worksheet Solutions

1. a) $CaSO_4 <==> Ca^{+2} + SO_4^{-2}$ If the solubility is 5.0 X 10⁻³ mol/L then we x x x will let 'x' be equal to this amount. $K_{sp} = [Ca^{+2}][SO_4^{-2}] = [x][x] = 5.0 X 10^{-3}$ Therefore $K_{sp} = (5.0 \times 10^{-3})^2$ $K_{sp} = 2.5 \times 10^{-5}$

- b) $MgF_2 <==> Mg^{+2} + 2 F^{-1}$ If the solubility is 2.7 X 10⁻³ mol/L then we x x 2x will let 'x' be equal to this amount. $K_{sp} = [Mg^{+2}][F^{-1}]^2 = [x][2x]^2 = 2.7 X 10^{-3}$ $K_{sp} = 4x^3$ Therefore $x = 4(2.7 X 10^{-3})^3$ $K_{sp} = 7.8 X 10^{-8}$
- c) There is 1.02 grams dissolved in 100 mL. this must first be converted to moles/L. moles = grams/molecular mass moles = 1.02 g / 166.89 g/moles = 0.006 moles $[AgC_2H_3O_2] = moles/L = 0.006 moles/0.1 L = 0.06 moles/L$ $AgC_2H_3O_2 <===> Ag^{+1} + C_2H_3O_2^{-1}$ If the solubility is 0.06 mol/L then we x x x will let 'x' be equal to this amount. $K_{sp} = [Ag^{+1}][C_2H_3O_2^{-1}] = [x][x] = 0.06$ Therefore $K_{sp} = (0.06)^2$ $K_{sp} = 3.6 X 10^{-3}$
- d) Convert 12.2 mg in 100 mL of water into moles/L 12.2 mg / 1000 mg/gram = 0.0122 grams moles = grams/molecules mass = 0.0122 grams/ 125.62 grams/mole = 9.7 X 10⁻⁵ moles [SrF₂] = moles/L = 9.7 X 10⁻⁵ / 0.1 L = 9.7 X 10⁻⁴ moles/L SrF₂ <===> Sr⁺² + 2 F⁻¹ If the solubility is 9.7 X 10⁻⁴ mol/L then we x 2x will let 'x' be equal to this amount. K_{sp} = [Mg⁺²][F⁻¹]² = [x][2x]² = 9.7 X 10⁻⁴ K_{sp} = 4x³ Therefore x = 4(9.7 X 10⁻⁴)³

Mr. Richards AP Chemistry

AVRSB AP Chemistry

 $K_{sp} = 3.0 \times 10^{-9}$

i) AgCN has a K_{sp} of 2.0 X 10^{-12} 2. $AgCN \ll Ag^{+1} + CN^{-1}$ X X X Ksp = $[Ag^{+1}][CN^{-1}]$ 2.0 X 10⁻¹² = (x)(x) $x = (2.0 \times 10^{-12})^{1/2}$ $x = 1.4 \times 10^{-9}$ moles/L (This is the solubility of the silver cyanide) molecular mass of $Ag^{+1} = 107.87$ g/mole Therefore 107.87 g/mole X 1.4 X 10^{-9} mole/L = 1.51 X 10^{-7} g/L $= 1.51 \text{ X } 10^{-7} \text{ mg/mL}$ ii) BaSO₄ has a K_{sp} of 1.5 X 10^{-9} AgCN <==> Ba⁺² + SO₄⁻² X X Х $Ksp = [Ba^{+2}][SO_4^{-2}]$ $1.5 \times 10^{-9} = (x)(x)$ $x = (1.5 \times 10^{-9})^{1/2}$ $x = 3.9 \times 10^{-5}$ moles/L (This is the solubility of the barium sulphate) molecular mass of $Ba^{+2} = 137.33$ g/mole Therefore 137.33 g/mole X 3.9 X 10^{-5} mole/L = 5.36 X 10^{-3} g/L $= 5.36 \text{ X } 10^{-3} \text{ mg/mL}$ iii) FeS has a K_{sp} of 3.7 X 10^{-19} FeS <===> Fe⁺² + S⁻² X X X

 $x = 6.1 \times 10^{-10}$ moles/L (This is the solubility of the iron(II) sulphate)

 $= 3.41 \text{ X } 10^{-8} \text{ mg/mL}$

Therefore 55.85 g/mole X 6.1 X 10^{-10} mole/L = 3.41 X 10^{-8} g/L

iv) $Mg(OH)_2$ has a K_{sp} of 9.0 X 10⁻¹² $Mg(OH)_2 <==> Mg^{+2} + 2 OH^{-1}$ x x 2 x $Ksp = [Mg^{+2}][OH^{-1}]^2$ Mr. Richards AP Chemistry

molecular mass of $Fe^{+2} = 55.85$ g/mole

Ksp = $[Fe^{+2}][S^{-2}]$ 3.7 X 10⁻¹⁹ = (x)(x) x = (3.7 X 10⁻¹⁹)^{1/2} AVRSB AP Chemistry

9.0 X $10^{-12} = (x)(2x)^2$ x = $(9.0 \times 10^{-12})^{1/3}$ (4) x = 1.3 X 10^{-4} moles/L (This is the solubility of the magnesium hydroxide) molecular mass of Mg⁺² = 24.31 g/mole Therefore 24.31 g/mole X 1.3 X 10^{-4} mole/L = 3.18 X 10^{-3} g/L = 3.18 X 10^{-3} mg/mL

v) Ag₂S has a K_{sp} of 1.6 X 10⁻⁴⁹ Ag₂S <===> 2 Ag⁺¹ + S⁻² x 2 x x Ksp = $[Ag^{+1}]^{2}[S^{-2}]$ 1.6 X 10⁻⁴⁹ = $(2x)^{2}(x)$ x = $(\underline{1.6 X 10^{-49}})^{1/3}$ (4) x = 3 4 X 10⁻¹⁷ molec/L (This

 $x = 3.4 \text{ X} 10^{-17} \text{ moles/L}$ (This is the solubility of the silver sulphide)

molecular mass of 2 moles of $Ag^{+1} = 215.74$ g/mole Therefore 215.74 g/mole X 3.4 X 10^{-17} mole/L = 7.33 X 10^{-15} g/L = 7.33 X 10^{-15} mg/mL

vi) CaF_{2} has a K_{sp} of 4.9 X 10^{-11} $CaF_{2} <==> Ca^{+2} + 2 F^{-1}$ x x 2x $Ksp = [Ca^{+2}][F^{-1}]^{2}$ $4.9 X 10^{-11} = (x)(2x)^{2}$ $x = (\frac{4.9 X 10^{-11}}{(4)})^{1/3}$ (4) x = 2.31 X 10^{-4} moles/L (This is the solubility of the calcium fluoride) molecular mass of $Ca^{+2} = 40.08$ g/mole Therefore 40.08 g/mole X 2.31 X 10^{-4} mole/L = 9.26 X 10^{-3} g/L = 9.26 X 10^{-3} mg/mL

	K _{sp}		Solubililty
PbS	K _{sp} 8.4 X 10 ⁻²⁸	$K_{sp} = x^2$	2.9 X 10 ⁻¹⁴ mole/L
PbSO ₄	1.8 X 10 ⁻⁸	$\mathbf{K_{sp}} = \mathbf{x}^2$	1.34 X 10 ⁻⁴ mole/L
Pb(IO₃) ₂	2.6 X 10 ⁻¹³	$K_{sp} = 4x^3$	4.02 X 10 ⁻⁵ mole/L

a) The lead(II) sulphate is the most soluble.

b) The solubility of the lead(II) sulphate is 1.34×10^{-4} moles/L

Mr. Richards AP Chemistry

3.

AVRSB AP Chemistry

4.

c) Molecular mass of PbSO4 is 303.27 g/mole
m = n X M
= 1.34 X 10⁻⁴ moles/L X 303.27 grams/mole
= 0.041 grams/L

d) Use the common ion effect and add something with sulphate ion in it that dissociates easily and more readily. i.e., H₂SO₄

e) The PbS concnetration is 2.9 X 10⁻¹⁴ moles/L

a) $Cu(OH)_2 \iff Cu^{+2} + 2 OH^{-1}$ $Ksp = [Cu^{+2}][OH^{-1}]^2$

therefore
$$[Cu^{+2}] = \frac{Ksp}{[OH^{-1}]^2} = \frac{1.6 \times 10^{-9}}{(1.0 \times 10^{-4})^2} = \frac{1.6 \times 10^{-9}}{1.0 \times 10^{-8}} = 0.16 \text{ mole/L}$$

grams = moles * molecular mass = 0.16 moles / L * 63.55 g/mole = 10.168 g/L = 10168 mg/L

b) $Fe(OH)_3 \iff Fe^{+1} + 3 OH^{-1}$

Ksp =
$$[Fe^{+1}][OH^{-1}]^3$$

therefore $[Fe^{+2}] = \frac{Ksp}{[OH^{-1}]^3} = \frac{6.0 \times 10^{-38}}{(1.0 \times 10^{-4})^3} = \frac{6.0 \times 10^{-38}}{1.0 \times 10^{-12}}$
= 6.0 X 10⁻²⁶ mole/L

Ksp =
$$[Mg^{+2}][OH^{-1}]^2$$

therefore $[Mg^{+2}] = \frac{Ksp}{[OH^{-1}]^2} = \frac{6.0 \times 10^{-12}}{(1.0 \times 10^{-4})^2} = \frac{6.0 \times 10^{-12}}{1.0 \times 10^{-8}}$

= 6.0 X 10⁻⁴ mole/L grams = moles * molecular mass = 6.0 X 10⁻⁴ mole/L * 24.31 g/mole = 1.4586 X 10⁻² g/L = 0.014586 g/L = 14.586 mg/L

Mr. Richards AP Chemistry