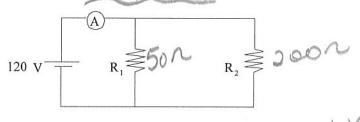

	Ne	·K
∇	Cinc	J. A.

An electric circuit is composed of two identical resistors, R₁ and R₂, three voltmeters, V, V₁ and V₂, and one ammeter, A. Each of voltmeters V1 and V2 V-= 1-12 indicates a potential difference V of 6 V.

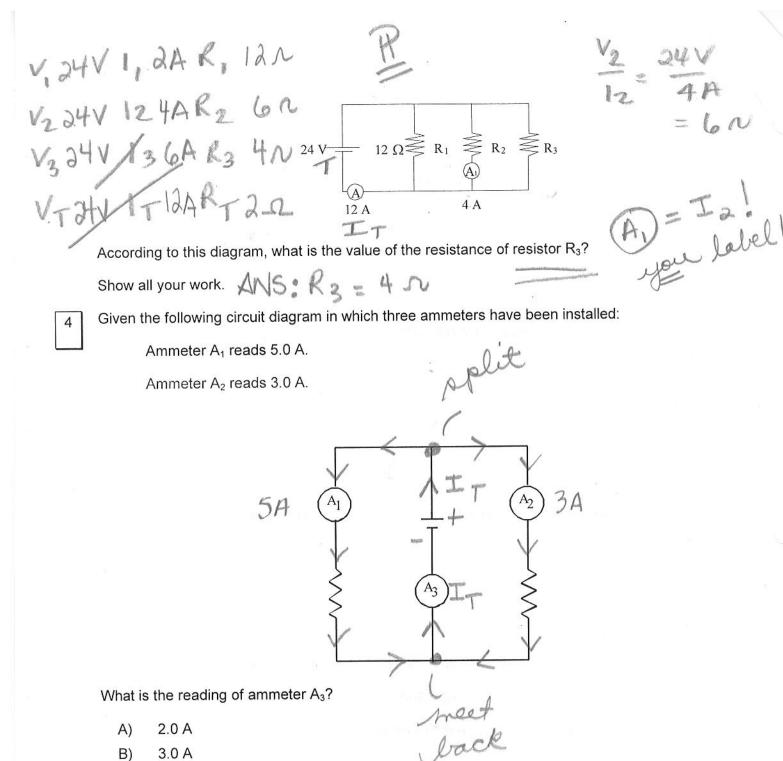
The diagram to the right illustrates this circuit.


What is the potential difference indicated by voltmeter V in this circuit?

3 V 6 V 12 V D) 14 V

Ry on Reg

An electric circuit is illustrated below. The value of the resistance of the resistors is


RT = 402 which

 $R_1 = 50 \Omega$ $R_2 = 200 \Omega$

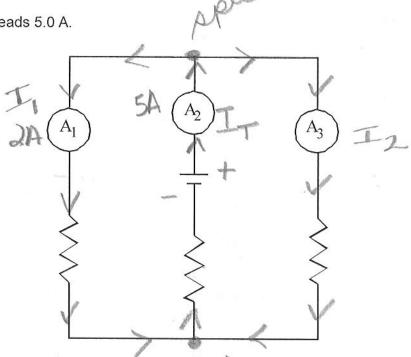
What is the value of the equivalent resistance of this circuit?

A circuit consisting of 3 resistors R₁, R₂ and R₃, connected in parallel is illustrated below. The power supply is fixed at 24 V.

200

Given the following circuit diagram in which three ammeters have been installed:

5.0 A


8.0 A

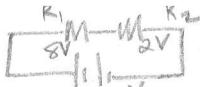
C)

5

Ammeter A₁ reads 2.0 A.

Ammeter A2 reads 5.0 A.

What is the reading of ammeter A₃?

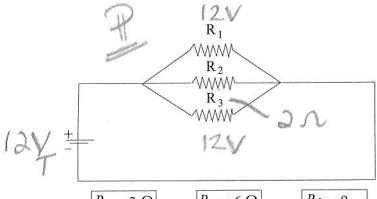

- 7.0 A A)
- B) 5.0 A
- C) 3.0 A
 - 2.0 A D)

The electric circuit shown below consists of an ammeter A, a power supply, and resistors R₁ and R₂ connected in parallel.

What is the current intensity (/) flowing through the ammeter?

Two electric circuits each consists of a power supply and resistors R₁ and R₂.

circuit 1:


For each circuit, the following table gives the potential difference (voltage), V, across the terminals of the power supply; the potential difference V_1 , across resistor R_1 ; and the potential difference, V_2 , across resistor R_2 .

Charles 3:

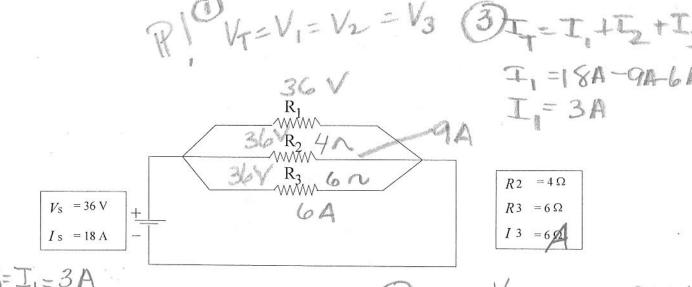
Circuit	V(V)	V ₁ (V)	V ₂ (V)
eries 1	10 🗸 🚃	8 V 🚣	2 🗸
P 2	10 √=	10 \ =	10 🗸

Draw a circuit diagram to illustrate each of these circuits. Give one reason to justify each of your diagrams.

The following diagram shows a parallel circuit consisting of three resistors.

$$R_1 = 3 \Omega$$
$$I_1 = 4 A$$

$$R_2 = 6 \Omega$$
 $I_2 = 2 \Delta$


$$R_3 = ?$$

$$I_3 = 6 \text{ A}$$

What is the value of resistor R_3 ?

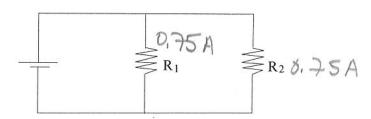
tor
$$R_3$$
? $= 1.6$, $= (4A)(3A) = 12V = 12V = 9E$

The following circuit is connected to a source that can provide a current intensity of 18 A when the potential difference (voltage) is 36 V?

ANS=I = 3A

What is the current intensity I_1 flowing through resistor R_1 ?

A parallel circuit is illustrated below.


What is the equivalent resistance of this circuit?

1 = 5n + 5n = 5n

C) 5Ω

D) 10Ω

The following electric circuit consists of two resistors R_1 and R_2 and a power source.

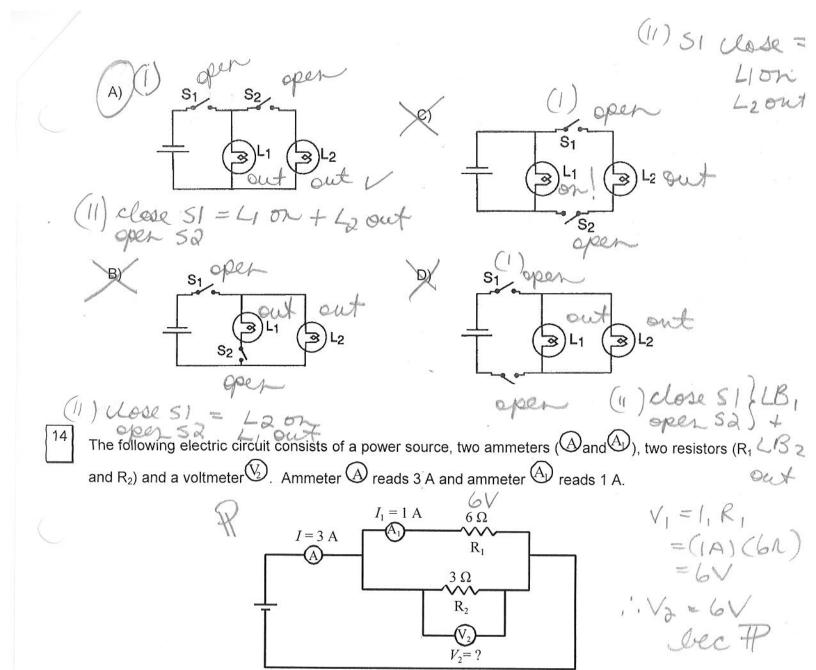
Using an ammeter, you measured the current intensity (/) through each resistor. Here are the results:

Resistor	Intensity (A)
R ₁	0.75
R_2	0.75

Given this information, what is the current intensity provided by the power source Is

In the laboratory, you built an electric circuit consisting of a power source, two different light bulbs, L₁ and L₂, and two ammeters, and A and C . The resistance of light bulb L₂ is twice the resistance of light bulb L_1 ($R_2 = 2R_1$).

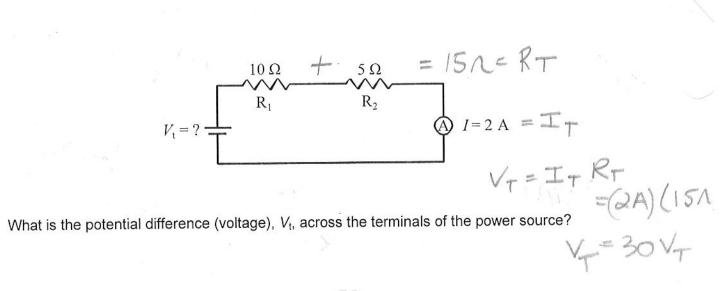
13


If ammeter (A) reads 0.6 A, what is the reading given by ammeter (A)?

An electrical circuit consists of a power source, two switches (S1 and S2) and two light bulbs (L1 and L_2).

The following table shows what happens to both light bulbs:

Switch		Light Bulb		
S ₁	S ₂	L ₁	L ₂	
open	open	out	out	
closed	open	bright	out	


Which of the following circuit diagrams illustrates the results shown in the table above?

What is the potential difference (voltage), V_2 , across the terminals of resistor R_2 ?

- A) 1.5 V
- (B) 6 V

- C) 9 V
 - D) 27 V
- The following circuit consists of a power source, two resistors (R_1 and R_2) and an ammeter A. The ammeter reads 2 A.

0.13 V A)

30 V

7.5 V B)

60 V