

$$\frac{P_i V_i}{T_i} = \frac{P_z V_z}{T_z}$$

Combined Gas Law Problems

Use the combined gas law to solve the following problems:

1) If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K, and then I raise the pressure to 14 atm and increase the temperature to 300 K, what is the new volume of the gas?

$$\frac{(12)(23L)}{200K} = \frac{(14atm)(V_2)}{300K} \qquad \begin{cases} V_2 = 29.57L \\ \frac{5ij}{fys} = 30L \end{cases}$$

$$1.38 = 0.04667(V_2)$$

$$V_z = 29.57 L$$

$$S_{ij} = 30L$$

$$R_{js} = 30L$$

2) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm, and a temperature of 299 K. If I raise the temperature to 350 K and lower the pressure to 1.5 atm, what is the new volume of the gas?

$$\frac{(23m)(17L)}{299K} = \frac{(1.5am)(V_2)}{350K}$$

$$0.13077 = 0.00429(V_2)$$

$$V_2 = 30.48L$$

$$\frac{59}{895} = 3.0 \times 10^{6}L$$

A gas that has a volume of 28 liters, a temperature of 45 0 C, and an 3) unknown pressure has its volume increased to 34 liters and its temperature decreased to 35 °C. If I measure the pressure after the change to be 2.0 atm, what was the original pressure of the gas?

$$\frac{(f_i)(28L)}{318K} = \frac{(2.0 \text{ atm})(34L)}{308 \text{ K}}$$
 $f_i = 2.51 \text{ atm}$
 $f_{igs} = 2.5 \text{ atm}$
 $f_{igs} = 2.5 \text{ atm}$

A gas has a temperature of 14 0 C, and a volume of 4.5 liters. If the temperature is raised to 29 0 C and the pressure is not changed, what is 4) the new volume of the gas? This is A CHARLES! LAW PROBLEM!

$$\frac{V_1}{T_1} = \frac{V_2}{T_Z}$$

5) If I have 17 liters of gas at a temperature of 67 0 C and a pressure of 88.89 atm, what will be the pressure of the gas if I raise the temperature to 94 0 C and decrease the volume to 12 liters?

67' = 340 K (88.89 atm) (17L) = (P2) (12L)
$$P_2 = 135.92$$
 atm 94° C = 367 K 340 K 340 K 367 K 367

6) I have an unknown volume of gas at a pressure of 0.5 atm and a temperature of 325 K. If I raise the pressure to 1.2 atm, decrease the temperature to 320 K, and measure the final volume to be 48 liters, what was the initial volume of the gas?

$$\frac{(0.5am)(V_1)}{325K} = \frac{(1.2am)(48L)}{320K}$$

$$\frac{(0.5am)(V_1)}{325K} = \frac{(1.2am)(48L)}{320K}$$

$$\frac{(0.5am)(V_1)}{320K} = \frac{116.88}{645} L$$

7) If I have 21 liters of gas held at a pressure of 78 atm and a temperature of 900 K, what will be the volume of the gas if I decrease the pressure to 45 atm and decrease the temperature to 750 K?

$$\frac{(78am)(21L)}{900K} = \frac{(45atm)(V_2)}{750 K}$$

$$1.82 = 0.06(V_2)$$

$$V_2 = 30.33 L$$

$$\frac{sig}{frgs} = 30 L$$

8) If I have 2.9 L of gas at a pressure of 5 atm and a temperature of 50 °C, what will be the temperature of the gas if I decrease the volume of the gas to 2.4 L and decrease the pressure to 3 atm?

$$\frac{58C = 323k}{323k} = \frac{(5am)(2.4)}{Tz} = \frac{160.356 k}{f_{ys}} = 200 k$$

$$0.0449 = \frac{7.2}{Tz}$$

9) I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60 atm. If by increasing the temperature to 225 K and decreasing the pressure to 30 atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?

$$\frac{(60am)(V_i)}{115k} = \frac{(30am)(29L)}{225k}$$

$$0.522(V_i) = 3.8667$$

$$V_i = 7.41 L$$

$$Sy = 7L$$

Combined Gas Law Problems - Solutions

- 1) If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K, and then I raise the pressure to 14 atm and increase the temperature to 300 K, what is the new volume of the gas?

 29.6 L
- 2) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm, and a temperature of 299 K. If I raise the temperature to 350 K and lower the pressure to 1.5 atm, what is the new volume of the gas? 30.5 L
- A gas that has a volume of 28 liters, a temperature of 45 0 C, and an unknown pressure has its volume increased to 34 liters and its temperature decreased to 35 0 C. If I measure the pressure after the change to be 2.0 atm, what was the original pressure of the gas? 2.51 atm
- 4) A gas has a temperature of 14 0 C, and a volume of 4.5 liters. If the temperature is raised to 29 0 C and the pressure is not changed, what is the new volume of the gas? **4.74** L
- 5) If I have 17 liters of gas at a temperature of 67 0 C and a pressure of 88.89 atm, what will be the pressure of the gas if I raise the temperature to 94 0 C and decrease the volume to 12 liters? **136 atm**
- I have an unknown volume of gas at a pressure of 0.5 atm and a temperature of 325 K. If I raise the pressure to 1.2 atm, decrease the temperature to 320 K, and measure the final volume to be 48 liters, what was the initial volume of the gas? 117 L
- 7) If I have 21 liters of gas held at a pressure of 78 atm and a temperature of 900 K, what will be the volume of the gas if I decrease the pressure to 45 atm and decrease the temperature to 750 K? 30.3 L
- 8) If I have 2.9 L of gas at a pressure of 5 atm and a temperature of 50 °C, what will be the temperature of the gas if I decrease the volume of the gas to 2.4 L and decrease the pressure to 3 atm? 160 K
- 9) I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60 atm. If by increasing the temperature to 225 K and decreasing the pressure to 30 atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with? 7.41 L