Boylis to Ideal

Boyle Charles Combined Gay-Lussac Avogadro Ideal Worksheet

	riigh-voitage circuit	ent gases are used in breakers, switchgears, cuit breakers that can c	and other	types of elec	trical equin	ment These of	ton
	A chemist was hired switchgear. The che	d by a railway company emist collected the follo	to determ wing data:	nine which ga	s was being		
		Volume of gas sample	e taken	97.3 mL	KIL OM	L =0.97	36
		Temperature of gas s	ample	20.0°C +	273 = 2	93K	
		Pressure of gas samp	ole	100.0 kPa	-P 1)	PV=nRT RT RT	
	The chemist calcula	ted the density of the g	as sample		,	=(100.0ki	Pax (0,9731
According to the data, which of the following gases was present in the switchgear?							171
	=449	= 1469	= 309	= 132	19/1 mol	= O.	0799 mil
	1. CO ₂	2. SF ₆ 1469 Ind 3. C ₂ H	to imply.	CF ₂ Cl ₂	5. SO ₃ = S O ₉	6. UF ₆ = 35	529/
()	following balanced of steech there	charles made the first a lloon by reacting sulphus chemical reaction. Fe(s) + H ₂ SO _{4(a}	Fig. \Rightarrow H	1_2 SO ₄ , with ire \times 10° L \times 1° \times 1° \times 1° \times 2° \times 2° \times 7° \times 7° \times 8° \times 9° \times 9	on filings. Fe	x I malks	the 2 = 9000 804 mol Ha
	The reaction consumed 5.0×10^2 L of 18 mol/L sulphuric acid. Assume he collected the hydrogen gas at a pressure of 100.8 kPa and a temperature of 19°C. $+2.73 = 29.2$ K						
	nyarogen gas at a p	C P	no a tempe	erature of 19°	U. + 273	3 = 292 K	(
	What volume of hyd	rogen gee weeld lee	0.			V=nRT	(2
An	© 2-2×10 ⁵	rogen gas would Jacqu L H ₂	les Charles	s have produ	ced?	=(9000 r	nel)(8:314)
3	A tire store fills its ti	res with nitrogen goo	 Ν Λ4 4	alala al			100.8kPa
Ů	Unfortunately, the ti	res with nitrogen gas, 315 kPa of pressure re valve is leaking. At e and finds that it has de	and finds ant o'cloc	that it requ k, when the t	ires 84 0 a	of nitrogen a	on standil
		P ₁	2	5	mi -	is Ti	Smel
	What mass of nitrog	en remained in the tire	764.49	7 72		1.11	/ n T
	(Assume that the capacity of the tire did not change.)						
	-	\sim	To n		NIK	DaTa d	2(29/2)
3	3.00 mol	iolune 289 = 19.6g (($\widehat{\lambda}$ $\cap_{\lambda} = 0$	(235)(3nd	K) 0
	0.20 mol X	= 19.69 4		`	٠, ١	(7)3/30	mol

- The Kinetic Molecular Theory describes an ideal gas model.

 Among the main features of this model are:
 - (I) Gases consist of molecular particles moving at any given instant in straight lines.
 - (II) Molecules collide with each other and with the container walls without loss of kinetic energy.
 - (III) The average kinetic energy of gas molecules is directly proportional to the Kelvin temperature.
 - (IV) Gas molecules are very widely spaced, relative to the size of the molecules. u

Which two of these Kinetic Molecular Theory features can be used to explain why gas bubbles always rise through a liquid and become larger as they move upward?

A) (I) and (III)

C) (II) and (III)

(I) and (IV)

D) (II) and (IV)

The standard value for R is 8.31 $\frac{kPa \bullet L}{mol \bullet K}$. Over time atmospheric pressure has been measured using many different units, including:

101.3 kPa

1 atmosphere (atm)

760 mm Hg

407 inches H₂O

PV= PRT NT AT (407 in NaO) (22.4L) R=33.4in/ (1mol) (273K)

What would be the ideal gas constant, R, if the pressure were measured in inches H₂O? (Use standard units for V, n, T.)

k Pa mol

Kernels of corn contain, on average, 15.0% water by mass.

What volume of water vapour, measured at 100.0° C and 101.3 kPa pressure, is formed from popping 155.0 g of popcorn?

PV= nRT RT RT

PV= nRT = (155.0g × 0.150 × 1mol HD)(8.314)(373.0K) = 39.5L P | HaD

- At which temperature and pressure is the molar volume of a gas the SMALLEST?
- 298 K and 25 kPa
- 323 K and 50 kPa C)
- 313 K and 101 kPa ენ . ^K B)
- 373 K and 75 kPa 41,5 D)

Worried about the environment, you want to buy the least polluting car on the market. Here is the equation of gasoline, C₈H₁₈, combustion:

$$C_8 H_{18(I)} \ + 12.5 \ O_{2(g)} \ \rightarrow \ 8 \ CO_{2(g)} \ + \ 9 \ H_2 O_{(g)}$$

The density of gasoline is 0.7 g/mL. A car sales clerk tries to convince you to buy a car with the following characteristics:

- manual transmission V yes
- 2.8 litre engine
- 7.2 L/100 km consumption
- 2 tail pipes

You drive approximately 24 000 km a year.

stach py=nRT

What volume of CO₂ will this car produce annually at an atmospheric pressure of 101.3 kPa and a temperature of 15 °C? +2+3=28% K

a temperature of 15°C?
$$+2+3=28\%$$
 K
1) 24000 km × 7.2 kgas × 0.79 × 1000 mk × $\frac{1 \text{ MCgH}_{18} \times 8 \text{ molCl}_{1}}{1 \text{ molCgH}_{18}}$
8.5 × 10 4 mol CO₂

a)
$$PV = \frac{18T}{8.5 \times 10^4 \text{ mol}(8.314)(388K)} = \frac{2.0 \times 10^4 \text{ LWa}}{(101.3 \times Pa)}$$

9