

Plastics and composites

EST		
	PAGES 396-401	

Complete this concept review handout and keep it as a record of what you have learned.

Definitions

•	A plastic is <u>a material made of polymers, to which other substances may be added to obtain certain desirable properties.</u>
•	A thermoplastic is a plastic that becomes soft enough when heated to be moulded or remoulded and that hardens enough when cooled to hold its shape.
•	A thermosetting plastic is a plastic that remains permanently hard, even when heated.
•	A composite is <u>formed by combining materials from different categories to obtain a</u> material with enhanced properties.

Degradation and protection of plastics

Cause of degradation	Description	Example of protection
Penetration by a	Substances in the liquid state (such as	Waterproof coating
liquid	water) or solutions (such as an acid) can	
	penetrate certain plastics.	
Oxidation	Oxygen and other gases can react with the	Addition of
	polymers in certain plastics.	antioxidants, such as
		carbon black
Ultraviolet rays	UV rays can damage plastic polymers.	Addition of pigments
		that absorb ultraviolet
		rays

Name:	Group:	Date:

Main matrices and reinforcements used in composites

Matrix or reinforcement	Properties sought
Plastic matrix	• Durability • Lightness
	• Resilience
	• Low cost
Metallic matrix	• Ductility
	Thermal and electrical conductivity
	• Stiffness
Ceramic matrix	• Durability
	• Heat resistance
Fibreglass	• Stiffness
reinforcement	Corrosion resistance
Aramid fibre	• Low density
reinforcement	Resilience
Carbon fibre	• Stiffness
reinforcement	• Low density
	Electrical conductivity

Degradation and protection of composites

The degradation of composites usually takes one of two forms:

- the deformation or fracture of the matrix or the reinforcements
- a loss of adherence between the matrix and the reinforcements.

To protect materials, it is important to:

- choose materials that are not likely to become deformed or break.
- assure a strong adherence between the matrix and the reinforcements.

